Pauli Kallio, Grzegorz Konert, Samuli Pyytövaara, Mikko Tikkanen
{"title":"促进室内农业技术发展的分子光合作用研究。","authors":"Pauli Kallio, Grzegorz Konert, Samuli Pyytövaara, Mikko Tikkanen","doi":"10.1111/ppl.70407","DOIUrl":null,"url":null,"abstract":"<p><p>Plants harness light energy through photosynthesis, a biological process that converts electromagnetic radiation into chemical form and drives CO<sub>2</sub> fixation to produce biomass. Photosynthetic machinery, the engine of the process, is a complex network of protein assemblies that function in plant chloroplasts and control the energy conversion process under constantly changing environmental conditions. This machinery is responsible for practically all food production on Earth, yet the molecular details and constraints that affect the overall energy efficiency are often ignored in the context of farming applications. This review is targeted at a wide audience and provides insight into the basic mechanistic concepts of photosynthesis and how these connect plant growth, conditional acclimation and efficiency. We aim to explain how different lights affect the photosynthetic performance and interlink with other environmental variables, and discuss why this should be taken into account under artificial conditions. We believe that a science-based view of future development that takes advantage of the molecular level knowledge on photosynthesis can be used for improved research equipment design and in commercial indoor farming applications with LED light technology and automated condition control. This requires fluent interdisciplinary communication from engineers who design research instrumentation to software developers and modelling experts involved in biological data processing. To advance this collaboration, we hope that this review serves as a bridge for those who are entering the field of molecular photosynthesis research, or people who are not specialised in plant science, but use or develop indoor farming and LED technologies.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 4","pages":"e70407"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254938/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular Photosynthesis Research Facilitating Technology Development Towards Enhanced Indoor Farming.\",\"authors\":\"Pauli Kallio, Grzegorz Konert, Samuli Pyytövaara, Mikko Tikkanen\",\"doi\":\"10.1111/ppl.70407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants harness light energy through photosynthesis, a biological process that converts electromagnetic radiation into chemical form and drives CO<sub>2</sub> fixation to produce biomass. Photosynthetic machinery, the engine of the process, is a complex network of protein assemblies that function in plant chloroplasts and control the energy conversion process under constantly changing environmental conditions. This machinery is responsible for practically all food production on Earth, yet the molecular details and constraints that affect the overall energy efficiency are often ignored in the context of farming applications. This review is targeted at a wide audience and provides insight into the basic mechanistic concepts of photosynthesis and how these connect plant growth, conditional acclimation and efficiency. We aim to explain how different lights affect the photosynthetic performance and interlink with other environmental variables, and discuss why this should be taken into account under artificial conditions. We believe that a science-based view of future development that takes advantage of the molecular level knowledge on photosynthesis can be used for improved research equipment design and in commercial indoor farming applications with LED light technology and automated condition control. This requires fluent interdisciplinary communication from engineers who design research instrumentation to software developers and modelling experts involved in biological data processing. To advance this collaboration, we hope that this review serves as a bridge for those who are entering the field of molecular photosynthesis research, or people who are not specialised in plant science, but use or develop indoor farming and LED technologies.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 4\",\"pages\":\"e70407\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254938/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70407\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70407","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Molecular Photosynthesis Research Facilitating Technology Development Towards Enhanced Indoor Farming.
Plants harness light energy through photosynthesis, a biological process that converts electromagnetic radiation into chemical form and drives CO2 fixation to produce biomass. Photosynthetic machinery, the engine of the process, is a complex network of protein assemblies that function in plant chloroplasts and control the energy conversion process under constantly changing environmental conditions. This machinery is responsible for practically all food production on Earth, yet the molecular details and constraints that affect the overall energy efficiency are often ignored in the context of farming applications. This review is targeted at a wide audience and provides insight into the basic mechanistic concepts of photosynthesis and how these connect plant growth, conditional acclimation and efficiency. We aim to explain how different lights affect the photosynthetic performance and interlink with other environmental variables, and discuss why this should be taken into account under artificial conditions. We believe that a science-based view of future development that takes advantage of the molecular level knowledge on photosynthesis can be used for improved research equipment design and in commercial indoor farming applications with LED light technology and automated condition control. This requires fluent interdisciplinary communication from engineers who design research instrumentation to software developers and modelling experts involved in biological data processing. To advance this collaboration, we hope that this review serves as a bridge for those who are entering the field of molecular photosynthesis research, or people who are not specialised in plant science, but use or develop indoor farming and LED technologies.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.