Liang Zhang, Md Hasan Ali, Chao Jiang, Furong Fan, Furong Zhu, Yating Lu, Mengwei Jia, Haipeng Yin, Jianwang Wei, Dongsen Wu, Shenghui Chu, Min Liu
{"title":"揭示红花籽粕中血清素衍生物作为潜在的抗溃疡性结肠炎药物:体外和计算证据。","authors":"Liang Zhang, Md Hasan Ali, Chao Jiang, Furong Fan, Furong Zhu, Yating Lu, Mengwei Jia, Haipeng Yin, Jianwang Wei, Dongsen Wu, Shenghui Chu, Min Liu","doi":"10.3390/molecules30132886","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the in vitro anti-inflammatory activity of serotonin derivatives from safflower seed powder and elucidated their mechanism against ulcerative colitis using network pharmacology. Compounds were extracted and purified via silica gel column chromatography, Sephadex LH-20 and semi-preparative HPLC. Structural characterization employed NMR and UPLC-Q-TOF-MS/MS with literature comparisons. Anti-inflammatory efficacy was assessed in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Network pharmacology predicted targets, molecular docking analyzed binding interactions and molecular dynamics simulations assessed complex stability. Eleven serotonin derivatives were isolated; N-trans-Feruloyl-3,5-dihydroxyindolin-2-one (<b>1</b>) and Bufoserotonin A (<b>2</b>) were identified in safflower seed meal for the first time. Compounds <b>1</b>, <b>3</b>-<b>7</b> and <b>10</b> significantly reduced inflammatory factors, with N-feruloyl serotonin (<b>4</b>, FS) showing the strongest activity. Mechanistic studies revealed FS targets key molecules (STAT3, EGFR, ESR1, PTGS2, NF-κB1, and JUN), modulating PI3K-Akt, MAPK and cancer-related pathways. Molecular dynamics simulations confirmed FS-EGFR complex stability. Thus, two novel derivatives were isolated and FS demonstrated significant anti-inflammatory and potential anti-ulcerative colitis effects through multi-target, multi-pathway synergy, providing a foundation for developing safflower seed meal therapeutics.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 13","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251380/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revealing Serotonin Derivatives in Safflower Seed Meal as Potential Anti-Ulcerative Colitis Drugs: In Vitro and Computational Evidence.\",\"authors\":\"Liang Zhang, Md Hasan Ali, Chao Jiang, Furong Fan, Furong Zhu, Yating Lu, Mengwei Jia, Haipeng Yin, Jianwang Wei, Dongsen Wu, Shenghui Chu, Min Liu\",\"doi\":\"10.3390/molecules30132886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated the in vitro anti-inflammatory activity of serotonin derivatives from safflower seed powder and elucidated their mechanism against ulcerative colitis using network pharmacology. Compounds were extracted and purified via silica gel column chromatography, Sephadex LH-20 and semi-preparative HPLC. Structural characterization employed NMR and UPLC-Q-TOF-MS/MS with literature comparisons. Anti-inflammatory efficacy was assessed in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Network pharmacology predicted targets, molecular docking analyzed binding interactions and molecular dynamics simulations assessed complex stability. Eleven serotonin derivatives were isolated; N-trans-Feruloyl-3,5-dihydroxyindolin-2-one (<b>1</b>) and Bufoserotonin A (<b>2</b>) were identified in safflower seed meal for the first time. Compounds <b>1</b>, <b>3</b>-<b>7</b> and <b>10</b> significantly reduced inflammatory factors, with N-feruloyl serotonin (<b>4</b>, FS) showing the strongest activity. Mechanistic studies revealed FS targets key molecules (STAT3, EGFR, ESR1, PTGS2, NF-κB1, and JUN), modulating PI3K-Akt, MAPK and cancer-related pathways. Molecular dynamics simulations confirmed FS-EGFR complex stability. Thus, two novel derivatives were isolated and FS demonstrated significant anti-inflammatory and potential anti-ulcerative colitis effects through multi-target, multi-pathway synergy, providing a foundation for developing safflower seed meal therapeutics.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 13\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251380/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30132886\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30132886","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Revealing Serotonin Derivatives in Safflower Seed Meal as Potential Anti-Ulcerative Colitis Drugs: In Vitro and Computational Evidence.
This study evaluated the in vitro anti-inflammatory activity of serotonin derivatives from safflower seed powder and elucidated their mechanism against ulcerative colitis using network pharmacology. Compounds were extracted and purified via silica gel column chromatography, Sephadex LH-20 and semi-preparative HPLC. Structural characterization employed NMR and UPLC-Q-TOF-MS/MS with literature comparisons. Anti-inflammatory efficacy was assessed in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Network pharmacology predicted targets, molecular docking analyzed binding interactions and molecular dynamics simulations assessed complex stability. Eleven serotonin derivatives were isolated; N-trans-Feruloyl-3,5-dihydroxyindolin-2-one (1) and Bufoserotonin A (2) were identified in safflower seed meal for the first time. Compounds 1, 3-7 and 10 significantly reduced inflammatory factors, with N-feruloyl serotonin (4, FS) showing the strongest activity. Mechanistic studies revealed FS targets key molecules (STAT3, EGFR, ESR1, PTGS2, NF-κB1, and JUN), modulating PI3K-Akt, MAPK and cancer-related pathways. Molecular dynamics simulations confirmed FS-EGFR complex stability. Thus, two novel derivatives were isolated and FS demonstrated significant anti-inflammatory and potential anti-ulcerative colitis effects through multi-target, multi-pathway synergy, providing a foundation for developing safflower seed meal therapeutics.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.