Pengfei Xu, Xia Wu, Zefang Zhang, Peng Pan, Xinyu Liu
{"title":"通过掺入高价阳离子增强水凝胶基可拉伸离子二极管的整流效果。","authors":"Pengfei Xu, Xia Wu, Zefang Zhang, Peng Pan, Xinyu Liu","doi":"10.1038/s41378-025-00943-1","DOIUrl":null,"url":null,"abstract":"<p><p>The controlled migration of ions in biological systems has inspired the development of ion-based electronics. Ionic diodes, leveraging ions as charge carriers, offer selective control over ion flux, mimicking ion-selective behavior observed in biological systems. Conventional ionic diodes containing fluids encounter challenges in adapting to biological systems due to their limited stretchability and stability. Recent advancements in solid-state ionic diodes based on stretchable gels enable tissue-like stretchability while maintaining diode-like performance. However, their relatively low rectification ratio hinders their electrical performance, necessitating effective strategies to enhance the rectification effect of stretchable ionic diodes. Here, we propose a method to enhance the rectification effect of hydrogel-based stretchable ionic diodes by incorporating high-valence cations into the P-type hydrogel layer. Through neutralization reactions, cations with valences of 1, 2, and 3 were introduced to replace original hydrogen ions in the hydrogel, resulting in a substantial increase in the rectification ratio from 3 to over 70, with an elevated rectification ratio (140) under 100% strain. The enhanced rectification effect enables applications in iontronics, such as ionic rectifiers and bipolar junction transistors (BJTs). This study, for the first time, highlights the potential of improving electrical performances of iontronics through the manipulation of different ion properties.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"139"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254241/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing the rectification effect of hydrogel-based stretchable ionic diodes through incorporating cations with high valence.\",\"authors\":\"Pengfei Xu, Xia Wu, Zefang Zhang, Peng Pan, Xinyu Liu\",\"doi\":\"10.1038/s41378-025-00943-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The controlled migration of ions in biological systems has inspired the development of ion-based electronics. Ionic diodes, leveraging ions as charge carriers, offer selective control over ion flux, mimicking ion-selective behavior observed in biological systems. Conventional ionic diodes containing fluids encounter challenges in adapting to biological systems due to their limited stretchability and stability. Recent advancements in solid-state ionic diodes based on stretchable gels enable tissue-like stretchability while maintaining diode-like performance. However, their relatively low rectification ratio hinders their electrical performance, necessitating effective strategies to enhance the rectification effect of stretchable ionic diodes. Here, we propose a method to enhance the rectification effect of hydrogel-based stretchable ionic diodes by incorporating high-valence cations into the P-type hydrogel layer. Through neutralization reactions, cations with valences of 1, 2, and 3 were introduced to replace original hydrogen ions in the hydrogel, resulting in a substantial increase in the rectification ratio from 3 to over 70, with an elevated rectification ratio (140) under 100% strain. The enhanced rectification effect enables applications in iontronics, such as ionic rectifiers and bipolar junction transistors (BJTs). This study, for the first time, highlights the potential of improving electrical performances of iontronics through the manipulation of different ion properties.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"139\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254241/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-025-00943-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00943-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Enhancing the rectification effect of hydrogel-based stretchable ionic diodes through incorporating cations with high valence.
The controlled migration of ions in biological systems has inspired the development of ion-based electronics. Ionic diodes, leveraging ions as charge carriers, offer selective control over ion flux, mimicking ion-selective behavior observed in biological systems. Conventional ionic diodes containing fluids encounter challenges in adapting to biological systems due to their limited stretchability and stability. Recent advancements in solid-state ionic diodes based on stretchable gels enable tissue-like stretchability while maintaining diode-like performance. However, their relatively low rectification ratio hinders their electrical performance, necessitating effective strategies to enhance the rectification effect of stretchable ionic diodes. Here, we propose a method to enhance the rectification effect of hydrogel-based stretchable ionic diodes by incorporating high-valence cations into the P-type hydrogel layer. Through neutralization reactions, cations with valences of 1, 2, and 3 were introduced to replace original hydrogen ions in the hydrogel, resulting in a substantial increase in the rectification ratio from 3 to over 70, with an elevated rectification ratio (140) under 100% strain. The enhanced rectification effect enables applications in iontronics, such as ionic rectifiers and bipolar junction transistors (BJTs). This study, for the first time, highlights the potential of improving electrical performances of iontronics through the manipulation of different ion properties.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.