{"title":"基于红细胞的非手性微型马达用于局部治疗递送。","authors":"Qi Wang, Jaideep Katuri, Narjes Dridi, Jamel Ali","doi":"10.1186/s13036-025-00537-5","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-hybrid micromotors, active structures composed of both biological and synthetic components, are promising for use in several biomedical applications including targeted drug delivery, tissue engineering, and biosensing. Among biological candidates, erythrocytes are well suited for use as the biological component of bio-hybrid micromotors due to their biocompatibility, mechanical deformability, and long circulation time. However, their symmetric shape and small size make controlled actuation of these devices particularly challenging. Here, we present a novel strategy to overcome these limitations by fabricating achiral erythrocyte micromotors with enhanced propulsion efficiency. Inspired by recent work on synthetic achiral microswimmers, we report two and three-cell micromotors fabricated through biotin-streptavidin binding. These self-assembled red blood cell (RBC) structures are then interfaced with magnetic beads enabling them to swim and roll under the propulsion of a single homogenous rotating magnetic field at a much greater velocity compared to single cell micromotors in both Newtonian and viscoelastic fluids. Further, to demonstrate biomedical application of these self-assembled micromotors, the chemotherapeutic agent doxorubicin is loaded into RBC achiral micromotors, which are magnetically directed to cancer cells within a microfluidic chamber, successfully delivering their anticancer payload. The fabrication and propulsion method reported here will aid in the development of future erythrocyte-based micromotors for drug delivery and cancer therapy.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"64"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255107/pdf/","citationCount":"0","resultStr":"{\"title\":\"Erythrocyte based achiral micromotors for localized therapeutic delivery.\",\"authors\":\"Qi Wang, Jaideep Katuri, Narjes Dridi, Jamel Ali\",\"doi\":\"10.1186/s13036-025-00537-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bio-hybrid micromotors, active structures composed of both biological and synthetic components, are promising for use in several biomedical applications including targeted drug delivery, tissue engineering, and biosensing. Among biological candidates, erythrocytes are well suited for use as the biological component of bio-hybrid micromotors due to their biocompatibility, mechanical deformability, and long circulation time. However, their symmetric shape and small size make controlled actuation of these devices particularly challenging. Here, we present a novel strategy to overcome these limitations by fabricating achiral erythrocyte micromotors with enhanced propulsion efficiency. Inspired by recent work on synthetic achiral microswimmers, we report two and three-cell micromotors fabricated through biotin-streptavidin binding. These self-assembled red blood cell (RBC) structures are then interfaced with magnetic beads enabling them to swim and roll under the propulsion of a single homogenous rotating magnetic field at a much greater velocity compared to single cell micromotors in both Newtonian and viscoelastic fluids. Further, to demonstrate biomedical application of these self-assembled micromotors, the chemotherapeutic agent doxorubicin is loaded into RBC achiral micromotors, which are magnetically directed to cancer cells within a microfluidic chamber, successfully delivering their anticancer payload. The fabrication and propulsion method reported here will aid in the development of future erythrocyte-based micromotors for drug delivery and cancer therapy.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"19 1\",\"pages\":\"64\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255107/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-025-00537-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00537-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Erythrocyte based achiral micromotors for localized therapeutic delivery.
Bio-hybrid micromotors, active structures composed of both biological and synthetic components, are promising for use in several biomedical applications including targeted drug delivery, tissue engineering, and biosensing. Among biological candidates, erythrocytes are well suited for use as the biological component of bio-hybrid micromotors due to their biocompatibility, mechanical deformability, and long circulation time. However, their symmetric shape and small size make controlled actuation of these devices particularly challenging. Here, we present a novel strategy to overcome these limitations by fabricating achiral erythrocyte micromotors with enhanced propulsion efficiency. Inspired by recent work on synthetic achiral microswimmers, we report two and three-cell micromotors fabricated through biotin-streptavidin binding. These self-assembled red blood cell (RBC) structures are then interfaced with magnetic beads enabling them to swim and roll under the propulsion of a single homogenous rotating magnetic field at a much greater velocity compared to single cell micromotors in both Newtonian and viscoelastic fluids. Further, to demonstrate biomedical application of these self-assembled micromotors, the chemotherapeutic agent doxorubicin is loaded into RBC achiral micromotors, which are magnetically directed to cancer cells within a microfluidic chamber, successfully delivering their anticancer payload. The fabrication and propulsion method reported here will aid in the development of future erythrocyte-based micromotors for drug delivery and cancer therapy.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.