甜味传递机制和检测方法的全面新见解。

IF 4.7 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Foods Pub Date : 2025-07-07 DOI:10.3390/foods14132397
Yuanwei Sun, Shengmeng Zhang, Tianzheng Bao, Zilin Jiang, Weiwei Huang, Xiaoqi Xu, Yibin Qiu, Peng Lei, Rui Wang, Hong Xu, Sha Li, Qi Zhang
{"title":"甜味传递机制和检测方法的全面新见解。","authors":"Yuanwei Sun, Shengmeng Zhang, Tianzheng Bao, Zilin Jiang, Weiwei Huang, Xiaoqi Xu, Yibin Qiu, Peng Lei, Rui Wang, Hong Xu, Sha Li, Qi Zhang","doi":"10.3390/foods14132397","DOIUrl":null,"url":null,"abstract":"<p><p>Sweet taste plays a pivotal role in human dietary behavior and metabolic regulation. With the increasing incidence of metabolic disorders linked to excessive sugar intake, the development and accurate evaluation of new sweeteners have become critical topics in food science and public health. However, the structural diversity of sweeteners and their complex interactions with sweet taste receptors present major challenges for standardized sweetness detection. This review offers a comprehensive and up-to-date overview of sweet taste transmission mechanisms and current detection methods. It outlines the classification and sensory characteristics of both conventional and emerging sweeteners, and explains the multi-level signaling pathway from receptor binding to neural encoding. Key detection techniques, including sensory evaluation, electronic tongues, and biosensors, are systematically compared in terms of their working principles, application scope, and limitations. Special emphasis is placed on advanced biosensing technologies utilizing receptor-ligand interactions and nanomaterials for highly sensitive and specific detection. Furthermore, an intelligent detection framework integrating molecular recognition, multi-source data fusion, and artificial intelligence is proposed. This interdisciplinary approach provides new insights and technical solutions to support precise sweetness evaluation and the future development of healthier food systems.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 13","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12248591/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive New Insights into Sweet Taste Transmission Mechanisms and Detection Methods.\",\"authors\":\"Yuanwei Sun, Shengmeng Zhang, Tianzheng Bao, Zilin Jiang, Weiwei Huang, Xiaoqi Xu, Yibin Qiu, Peng Lei, Rui Wang, Hong Xu, Sha Li, Qi Zhang\",\"doi\":\"10.3390/foods14132397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sweet taste plays a pivotal role in human dietary behavior and metabolic regulation. With the increasing incidence of metabolic disorders linked to excessive sugar intake, the development and accurate evaluation of new sweeteners have become critical topics in food science and public health. However, the structural diversity of sweeteners and their complex interactions with sweet taste receptors present major challenges for standardized sweetness detection. This review offers a comprehensive and up-to-date overview of sweet taste transmission mechanisms and current detection methods. It outlines the classification and sensory characteristics of both conventional and emerging sweeteners, and explains the multi-level signaling pathway from receptor binding to neural encoding. Key detection techniques, including sensory evaluation, electronic tongues, and biosensors, are systematically compared in terms of their working principles, application scope, and limitations. Special emphasis is placed on advanced biosensing technologies utilizing receptor-ligand interactions and nanomaterials for highly sensitive and specific detection. Furthermore, an intelligent detection framework integrating molecular recognition, multi-source data fusion, and artificial intelligence is proposed. This interdisciplinary approach provides new insights and technical solutions to support precise sweetness evaluation and the future development of healthier food systems.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":\"14 13\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12248591/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods14132397\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14132397","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

甜味在人类饮食行为和代谢调节中起着关键作用。随着与糖摄入过量相关的代谢紊乱发病率的增加,开发和准确评估新型甜味剂已成为食品科学和公共卫生领域的重要课题。然而,甜味剂的结构多样性及其与甜味受体的复杂相互作用为标准化甜味检测带来了重大挑战。这篇综述提供了全面和最新的甜味传递机制和目前的检测方法的概述。它概述了传统和新兴甜味剂的分类和感官特征,并解释了从受体结合到神经编码的多层次信号通路。系统比较了感官评价、电子舌头、生物传感器等关键检测技术的工作原理、应用范围和局限性。特别强调的是先进的生物传感技术,利用受体-配体相互作用和纳米材料进行高灵敏度和特异性检测。在此基础上,提出了一种集分子识别、多源数据融合和人工智能于一体的智能检测框架。这种跨学科的方法提供了新的见解和技术解决方案,以支持精确的甜度评估和健康食品系统的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive New Insights into Sweet Taste Transmission Mechanisms and Detection Methods.

Sweet taste plays a pivotal role in human dietary behavior and metabolic regulation. With the increasing incidence of metabolic disorders linked to excessive sugar intake, the development and accurate evaluation of new sweeteners have become critical topics in food science and public health. However, the structural diversity of sweeteners and their complex interactions with sweet taste receptors present major challenges for standardized sweetness detection. This review offers a comprehensive and up-to-date overview of sweet taste transmission mechanisms and current detection methods. It outlines the classification and sensory characteristics of both conventional and emerging sweeteners, and explains the multi-level signaling pathway from receptor binding to neural encoding. Key detection techniques, including sensory evaluation, electronic tongues, and biosensors, are systematically compared in terms of their working principles, application scope, and limitations. Special emphasis is placed on advanced biosensing technologies utilizing receptor-ligand interactions and nanomaterials for highly sensitive and specific detection. Furthermore, an intelligent detection framework integrating molecular recognition, multi-source data fusion, and artificial intelligence is proposed. This interdisciplinary approach provides new insights and technical solutions to support precise sweetness evaluation and the future development of healthier food systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foods
Foods Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
15.40%
发文量
3516
审稿时长
15.83 days
期刊介绍: Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Ÿ manuscripts regarding research proposals and research ideas will be particularly welcomed Ÿ electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material Ÿ we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信