Jun Zou, Jingyao Zhang, Yu Li, Baowen Yuan, Yuanyi Wang, Yalong Qi, Qian Wang, Wan Qin, Xianglin Yuan, Binghe Xu
{"title":"间质PLAU介导肿瘤进展,并为三阴性乳腺癌提供新的治疗靶点。","authors":"Jun Zou, Jingyao Zhang, Yu Li, Baowen Yuan, Yuanyi Wang, Yalong Qi, Qian Wang, Wan Qin, Xianglin Yuan, Binghe Xu","doi":"10.1186/s12935-025-03867-y","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by limited treatment options and poor prognosis. Recent evidence highlights the crucial role of cancer-associated fibroblasts (CAFs) in TNBC progression, yet their molecular characteristics remain incompletely understood. In this study, we performed a comprehensive analysis combining bioinformatics approaches with experimental validation to investigate CAF-related genes in TNBC. Using weighted gene co-expression network analysis (WGCNA) of TNBC samples from TCGA and METABRIC datasets, we identified 185 CAF-related genes significantly associated with extracellular matrix organization and TGF-β signaling pathways. Through rigorous statistical modeling, we developed a 3-gene prognostic signature (CERCAM, JAM3, PLAU) that effectively stratified TNBC patients into high- and low-risk groups with distinct survival outcomes. Importantly, we validated the functional role of PLAU, one of the signature genes, through in vitro and in vivo experiments. Results showed that CAF-derived PLAU played key role in the malignant behaviors of TNBC. Our findings provide new insights into CAF-mediated TNBC progression and suggest potential stromal targets for therapeutic intervention.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"259"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255126/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stromal PLAU mediates tumor progression and informs a novel therapeutic target in triple-negative breast cancer.\",\"authors\":\"Jun Zou, Jingyao Zhang, Yu Li, Baowen Yuan, Yuanyi Wang, Yalong Qi, Qian Wang, Wan Qin, Xianglin Yuan, Binghe Xu\",\"doi\":\"10.1186/s12935-025-03867-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by limited treatment options and poor prognosis. Recent evidence highlights the crucial role of cancer-associated fibroblasts (CAFs) in TNBC progression, yet their molecular characteristics remain incompletely understood. In this study, we performed a comprehensive analysis combining bioinformatics approaches with experimental validation to investigate CAF-related genes in TNBC. Using weighted gene co-expression network analysis (WGCNA) of TNBC samples from TCGA and METABRIC datasets, we identified 185 CAF-related genes significantly associated with extracellular matrix organization and TGF-β signaling pathways. Through rigorous statistical modeling, we developed a 3-gene prognostic signature (CERCAM, JAM3, PLAU) that effectively stratified TNBC patients into high- and low-risk groups with distinct survival outcomes. Importantly, we validated the functional role of PLAU, one of the signature genes, through in vitro and in vivo experiments. Results showed that CAF-derived PLAU played key role in the malignant behaviors of TNBC. Our findings provide new insights into CAF-mediated TNBC progression and suggest potential stromal targets for therapeutic intervention.</p>\",\"PeriodicalId\":9385,\"journal\":{\"name\":\"Cancer Cell International\",\"volume\":\"25 1\",\"pages\":\"259\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255126/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12935-025-03867-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03867-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Stromal PLAU mediates tumor progression and informs a novel therapeutic target in triple-negative breast cancer.
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by limited treatment options and poor prognosis. Recent evidence highlights the crucial role of cancer-associated fibroblasts (CAFs) in TNBC progression, yet their molecular characteristics remain incompletely understood. In this study, we performed a comprehensive analysis combining bioinformatics approaches with experimental validation to investigate CAF-related genes in TNBC. Using weighted gene co-expression network analysis (WGCNA) of TNBC samples from TCGA and METABRIC datasets, we identified 185 CAF-related genes significantly associated with extracellular matrix organization and TGF-β signaling pathways. Through rigorous statistical modeling, we developed a 3-gene prognostic signature (CERCAM, JAM3, PLAU) that effectively stratified TNBC patients into high- and low-risk groups with distinct survival outcomes. Importantly, we validated the functional role of PLAU, one of the signature genes, through in vitro and in vivo experiments. Results showed that CAF-derived PLAU played key role in the malignant behaviors of TNBC. Our findings provide new insights into CAF-mediated TNBC progression and suggest potential stromal targets for therapeutic intervention.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.