{"title":"细胞色素p450衍生的环氧脂肪酸神经保护的分子机制。","authors":"Cynthia Navarro-Mabarak, Julio Morán","doi":"10.1016/j.bbalip.2025.159663","DOIUrl":null,"url":null,"abstract":"<div><div>The epoxyeicosatrienoic acids (EETs) are metabolites that result from the oxidation of the arachidonic acid by cytochrome P450 (CYP) epoxygenases. EETs are known to exert anti-inflammatory, antioxidant, vasodilatory, pro-angiogenic and anti-apoptotic actions. In the nervous system, EETs have been found to be neuroprotective in different models of neuronal damage. However, the molecular mechanisms responsible for these effects are not yet fully understood. This article seeks to review what is known about the signaling pathways involved in the EETs mediated neuroprotection. The mechanisms responsible for these effects are complex and involve several biological pathways that often crosstalk, including an inhibition of NFκB pathway, the activation of PPARα/γ nuclear receptors, and the activation of the PI3K/Akt pathway, among others. We also review what is known about the production and the biological significance of the epoxyeicosatrienoic acid ethanolamides (EET-EAs) and the epoxyeicosatrienoic acid glycerols (EET-EGs), metabolites that result from the epoxidation of the anandamide (AEA) and 2-arachidonylglycerol (2-AG) by CYP epoxygenases, which show endocannabinoid features.</div></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1870 7","pages":"Article 159663"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms of cytochrome P450-derived epoxy-fatty acids neuroprotection\",\"authors\":\"Cynthia Navarro-Mabarak, Julio Morán\",\"doi\":\"10.1016/j.bbalip.2025.159663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The epoxyeicosatrienoic acids (EETs) are metabolites that result from the oxidation of the arachidonic acid by cytochrome P450 (CYP) epoxygenases. EETs are known to exert anti-inflammatory, antioxidant, vasodilatory, pro-angiogenic and anti-apoptotic actions. In the nervous system, EETs have been found to be neuroprotective in different models of neuronal damage. However, the molecular mechanisms responsible for these effects are not yet fully understood. This article seeks to review what is known about the signaling pathways involved in the EETs mediated neuroprotection. The mechanisms responsible for these effects are complex and involve several biological pathways that often crosstalk, including an inhibition of NFκB pathway, the activation of PPARα/γ nuclear receptors, and the activation of the PI3K/Akt pathway, among others. We also review what is known about the production and the biological significance of the epoxyeicosatrienoic acid ethanolamides (EET-EAs) and the epoxyeicosatrienoic acid glycerols (EET-EGs), metabolites that result from the epoxidation of the anandamide (AEA) and 2-arachidonylglycerol (2-AG) by CYP epoxygenases, which show endocannabinoid features.</div></div>\",\"PeriodicalId\":8815,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"volume\":\"1870 7\",\"pages\":\"Article 159663\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138819812500071X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138819812500071X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular mechanisms of cytochrome P450-derived epoxy-fatty acids neuroprotection
The epoxyeicosatrienoic acids (EETs) are metabolites that result from the oxidation of the arachidonic acid by cytochrome P450 (CYP) epoxygenases. EETs are known to exert anti-inflammatory, antioxidant, vasodilatory, pro-angiogenic and anti-apoptotic actions. In the nervous system, EETs have been found to be neuroprotective in different models of neuronal damage. However, the molecular mechanisms responsible for these effects are not yet fully understood. This article seeks to review what is known about the signaling pathways involved in the EETs mediated neuroprotection. The mechanisms responsible for these effects are complex and involve several biological pathways that often crosstalk, including an inhibition of NFκB pathway, the activation of PPARα/γ nuclear receptors, and the activation of the PI3K/Akt pathway, among others. We also review what is known about the production and the biological significance of the epoxyeicosatrienoic acid ethanolamides (EET-EAs) and the epoxyeicosatrienoic acid glycerols (EET-EGs), metabolites that result from the epoxidation of the anandamide (AEA) and 2-arachidonylglycerol (2-AG) by CYP epoxygenases, which show endocannabinoid features.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.