Kim-Thanh Van , Fatimah Nabeebaccus , Foudil Lamari , Susana Boluda , François Fenaille , Nicolas Villain , François Becher
{"title":"优化免疫沉淀后人脑组织中新型截断α-突触核蛋白的质谱鉴定。","authors":"Kim-Thanh Van , Fatimah Nabeebaccus , Foudil Lamari , Susana Boluda , François Fenaille , Nicolas Villain , François Becher","doi":"10.1016/j.ab.2025.115942","DOIUrl":null,"url":null,"abstract":"<div><div>α-synuclein is a protein central to neurodegenerative diseases, and its functions are affected by multiple posttranslational modifications. Mass spectrometry is powerful for the characterization of α-synuclein forms but requires prior efficient immunoprecipitation conditions. In this study, we refined the immunoprecipitation of α-synuclein from human brain tissues by evaluating key parameters that influence recovery and specificity. We assessed the performance of tosyl-activated magnetic beads versus sheep antibody beads, identifying the optimal bead type for enhanced binding efficiency. Various elution conditions were rigorously tested to maximize protein yield. We also evaluated a range of antibodies specific to α-synuclein and delineated the effects of antibody amount and bead volume on the recovery of α-synuclein. The optimized immunoprecipitation protocol was effectively combined with high-resolution mass spectrometry for characterizing brain-derived α-synuclein from Parkinson's disease patients and controls. The assay identified a total of 38 N- or C-terminal truncated α-synuclein forms, including 22 novel sites. Our findings provide analytical tools for the reliable enrichment and characterization of α-synuclein from complex biological matrices, with potential applications in biomarker discovery and the investigation of pathogenic mechanisms underlying synucleinopathies.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"706 ","pages":"Article 115942"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass spectrometric identification of novel truncated α-synuclein species following optimized immunoprecipitation from human brain tissue\",\"authors\":\"Kim-Thanh Van , Fatimah Nabeebaccus , Foudil Lamari , Susana Boluda , François Fenaille , Nicolas Villain , François Becher\",\"doi\":\"10.1016/j.ab.2025.115942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>α-synuclein is a protein central to neurodegenerative diseases, and its functions are affected by multiple posttranslational modifications. Mass spectrometry is powerful for the characterization of α-synuclein forms but requires prior efficient immunoprecipitation conditions. In this study, we refined the immunoprecipitation of α-synuclein from human brain tissues by evaluating key parameters that influence recovery and specificity. We assessed the performance of tosyl-activated magnetic beads versus sheep antibody beads, identifying the optimal bead type for enhanced binding efficiency. Various elution conditions were rigorously tested to maximize protein yield. We also evaluated a range of antibodies specific to α-synuclein and delineated the effects of antibody amount and bead volume on the recovery of α-synuclein. The optimized immunoprecipitation protocol was effectively combined with high-resolution mass spectrometry for characterizing brain-derived α-synuclein from Parkinson's disease patients and controls. The assay identified a total of 38 N- or C-terminal truncated α-synuclein forms, including 22 novel sites. Our findings provide analytical tools for the reliable enrichment and characterization of α-synuclein from complex biological matrices, with potential applications in biomarker discovery and the investigation of pathogenic mechanisms underlying synucleinopathies.</div></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"706 \",\"pages\":\"Article 115942\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269725001812\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269725001812","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Mass spectrometric identification of novel truncated α-synuclein species following optimized immunoprecipitation from human brain tissue
α-synuclein is a protein central to neurodegenerative diseases, and its functions are affected by multiple posttranslational modifications. Mass spectrometry is powerful for the characterization of α-synuclein forms but requires prior efficient immunoprecipitation conditions. In this study, we refined the immunoprecipitation of α-synuclein from human brain tissues by evaluating key parameters that influence recovery and specificity. We assessed the performance of tosyl-activated magnetic beads versus sheep antibody beads, identifying the optimal bead type for enhanced binding efficiency. Various elution conditions were rigorously tested to maximize protein yield. We also evaluated a range of antibodies specific to α-synuclein and delineated the effects of antibody amount and bead volume on the recovery of α-synuclein. The optimized immunoprecipitation protocol was effectively combined with high-resolution mass spectrometry for characterizing brain-derived α-synuclein from Parkinson's disease patients and controls. The assay identified a total of 38 N- or C-terminal truncated α-synuclein forms, including 22 novel sites. Our findings provide analytical tools for the reliable enrichment and characterization of α-synuclein from complex biological matrices, with potential applications in biomarker discovery and the investigation of pathogenic mechanisms underlying synucleinopathies.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.