{"title":"CAD-CAM复合材料与二硅酸锂玻璃陶瓷的疲劳行为。","authors":"Yousef Karevan, Maher Eldafrawy, Raphael Herman, Christelle Sanchez, Michaël Sadoun, Amélie Mainjot","doi":"10.1016/j.dental.2025.07.004","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To assess the fatigue properties of four CAD-CAM composites and compare them with lithium disilicate glass-ceramic.</p><p><strong>Methods: </strong>The materials studied were: Brilliant Crios (BRI); Cerasmart 270 (CER); Grandio (GRN); and Tetric CAD (TET), and a lithium disilicate glass-ceramic (IPS e.max CAD, EMX) as a reference. Blocks were cut into bars and used for: 1) 3-point flexural test (n = 30/material); and 2) constructing S-N curves (n = 35/material). Fatigue tests were conducted in 36 °C water bath at a frequency of 1 Hz lasting up to 3 × 10<sup>6</sup> cycles. The S-N curves were plotted using the Basquin model, assuming a distribution of fatigue life following the Weibull statistics. Digital microscopy was used to study the creep of a runout composite sample (CER), and fractured surfaces of selected samples were analyzed using laser confocal microscopy and scanning electron microscopy.</p><p><strong>Results: </strong>Compared to EMX, CAD-CAM composites have a shorter lifespan but comparable fatigue degradation (fatigue to flexural strength ratios) at 5 × 10<sup>4</sup> cycles (0.57-0.65 versus 0.58). Their slow crack growth parameter (n) were close, ranging from 10.4 to 13.3 for CAD-CAM composites and 14.2 for EMX. Fatigue data of CAD-CAM composites showed less variability than EMX. Creep was detected in CAD-CAM composites at 3 × 10<sup>6</sup> cycles.</p><p><strong>Significance: </strong>Despite CAD-CAM composites having shorter lifetimes than EMX, they show similar resistance to fatigue degradation. Time-dependent factors seem to significantly influence composites fatigue at lower stress levels. Thus, extended fatigue testing in water, despite being time-consuming and costly, is essential for understanding material behavior under clinical conditions.</p>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue behavior of CAD-CAM composites versus lithium disilicate glass-ceramic.\",\"authors\":\"Yousef Karevan, Maher Eldafrawy, Raphael Herman, Christelle Sanchez, Michaël Sadoun, Amélie Mainjot\",\"doi\":\"10.1016/j.dental.2025.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To assess the fatigue properties of four CAD-CAM composites and compare them with lithium disilicate glass-ceramic.</p><p><strong>Methods: </strong>The materials studied were: Brilliant Crios (BRI); Cerasmart 270 (CER); Grandio (GRN); and Tetric CAD (TET), and a lithium disilicate glass-ceramic (IPS e.max CAD, EMX) as a reference. Blocks were cut into bars and used for: 1) 3-point flexural test (n = 30/material); and 2) constructing S-N curves (n = 35/material). Fatigue tests were conducted in 36 °C water bath at a frequency of 1 Hz lasting up to 3 × 10<sup>6</sup> cycles. The S-N curves were plotted using the Basquin model, assuming a distribution of fatigue life following the Weibull statistics. Digital microscopy was used to study the creep of a runout composite sample (CER), and fractured surfaces of selected samples were analyzed using laser confocal microscopy and scanning electron microscopy.</p><p><strong>Results: </strong>Compared to EMX, CAD-CAM composites have a shorter lifespan but comparable fatigue degradation (fatigue to flexural strength ratios) at 5 × 10<sup>4</sup> cycles (0.57-0.65 versus 0.58). Their slow crack growth parameter (n) were close, ranging from 10.4 to 13.3 for CAD-CAM composites and 14.2 for EMX. Fatigue data of CAD-CAM composites showed less variability than EMX. Creep was detected in CAD-CAM composites at 3 × 10<sup>6</sup> cycles.</p><p><strong>Significance: </strong>Despite CAD-CAM composites having shorter lifetimes than EMX, they show similar resistance to fatigue degradation. Time-dependent factors seem to significantly influence composites fatigue at lower stress levels. Thus, extended fatigue testing in water, despite being time-consuming and costly, is essential for understanding material behavior under clinical conditions.</p>\",\"PeriodicalId\":298,\"journal\":{\"name\":\"Dental Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dental.2025.07.004\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dental.2025.07.004","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Fatigue behavior of CAD-CAM composites versus lithium disilicate glass-ceramic.
Objective: To assess the fatigue properties of four CAD-CAM composites and compare them with lithium disilicate glass-ceramic.
Methods: The materials studied were: Brilliant Crios (BRI); Cerasmart 270 (CER); Grandio (GRN); and Tetric CAD (TET), and a lithium disilicate glass-ceramic (IPS e.max CAD, EMX) as a reference. Blocks were cut into bars and used for: 1) 3-point flexural test (n = 30/material); and 2) constructing S-N curves (n = 35/material). Fatigue tests were conducted in 36 °C water bath at a frequency of 1 Hz lasting up to 3 × 106 cycles. The S-N curves were plotted using the Basquin model, assuming a distribution of fatigue life following the Weibull statistics. Digital microscopy was used to study the creep of a runout composite sample (CER), and fractured surfaces of selected samples were analyzed using laser confocal microscopy and scanning electron microscopy.
Results: Compared to EMX, CAD-CAM composites have a shorter lifespan but comparable fatigue degradation (fatigue to flexural strength ratios) at 5 × 104 cycles (0.57-0.65 versus 0.58). Their slow crack growth parameter (n) were close, ranging from 10.4 to 13.3 for CAD-CAM composites and 14.2 for EMX. Fatigue data of CAD-CAM composites showed less variability than EMX. Creep was detected in CAD-CAM composites at 3 × 106 cycles.
Significance: Despite CAD-CAM composites having shorter lifetimes than EMX, they show similar resistance to fatigue degradation. Time-dependent factors seem to significantly influence composites fatigue at lower stress levels. Thus, extended fatigue testing in water, despite being time-consuming and costly, is essential for understanding material behavior under clinical conditions.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.