右美托咪定与自然睡眠对听觉新颖性加工的调节:一项人类颅内电生理研究

IF 2.4 4区 医学 Q3 NEUROSCIENCES
Kirill V. Nourski, Mitchell Steinschneider, Ariane E. Rhone, Rashmi N. Mueller, Matthew I. Banks
{"title":"右美托咪定与自然睡眠对听觉新颖性加工的调节:一项人类颅内电生理研究","authors":"Kirill V. Nourski,&nbsp;Mitchell Steinschneider,&nbsp;Ariane E. Rhone,&nbsp;Rashmi N. Mueller,&nbsp;Matthew I. Banks","doi":"10.1111/ejn.70181","DOIUrl":null,"url":null,"abstract":"<p>Identifying neural signatures of loss of consciousness is a major goal of neuroscience. The local/global auditory novelty paradigm has been useful in characterizing sensory processing across arousal states. Propofol suppresses responses to long-term novelty (global deviance, GD) at subhypnotic doses; suppression of responses to short-term novelty (local deviance, LD) outside auditory cortex may represent a biomarker of loss of consciousness. Dexmedetomidine is an alpha-2 adrenergic agonist that induces sleep-like sedation. This study examined whether the changes in auditory novelty processing observed with propofol, a GABA-ergic agent, also occur with dexmedetomidine and during sleep. Intracranial recordings were obtained in neurosurgical patients undergoing monitoring for refractory epilepsy. Stimuli were vowel sequences incorporating LD and GD. Neural activity was recorded during wakefulness, administration of dexmedetomidine, and sleep and was examined as the averaged evoked potential (AEP) and high gamma (70–150 Hz) power. AEP responses were more broadly distributed than high gamma activity. Results previously observed with propofol were replicated with dexmedetomidine. Subhypnotic doses led to decreased LD effects and a precipitous decline in GD effects. Loss of responsiveness was associated with loss of LD effects outside the auditory cortex. Likewise, daytime sleep was associated with cessation of GD effects and confinement of LD effects to the auditory cortex. Results support the generalizability of changes in auditory novelty processing to dexmedetomidine and sleep. Preservation of LD effects in the auditory cortex indicates that the auditory cortex continues to monitor the environment following loss of responsiveness.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"62 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.70181","citationCount":"0","resultStr":"{\"title\":\"Modulation of Auditory Novelty Processing by Dexmedetomidine and Natural Sleep: A Human Intracranial Electrophysiology Study\",\"authors\":\"Kirill V. Nourski,&nbsp;Mitchell Steinschneider,&nbsp;Ariane E. Rhone,&nbsp;Rashmi N. Mueller,&nbsp;Matthew I. Banks\",\"doi\":\"10.1111/ejn.70181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identifying neural signatures of loss of consciousness is a major goal of neuroscience. The local/global auditory novelty paradigm has been useful in characterizing sensory processing across arousal states. Propofol suppresses responses to long-term novelty (global deviance, GD) at subhypnotic doses; suppression of responses to short-term novelty (local deviance, LD) outside auditory cortex may represent a biomarker of loss of consciousness. Dexmedetomidine is an alpha-2 adrenergic agonist that induces sleep-like sedation. This study examined whether the changes in auditory novelty processing observed with propofol, a GABA-ergic agent, also occur with dexmedetomidine and during sleep. Intracranial recordings were obtained in neurosurgical patients undergoing monitoring for refractory epilepsy. Stimuli were vowel sequences incorporating LD and GD. Neural activity was recorded during wakefulness, administration of dexmedetomidine, and sleep and was examined as the averaged evoked potential (AEP) and high gamma (70–150 Hz) power. AEP responses were more broadly distributed than high gamma activity. Results previously observed with propofol were replicated with dexmedetomidine. Subhypnotic doses led to decreased LD effects and a precipitous decline in GD effects. Loss of responsiveness was associated with loss of LD effects outside the auditory cortex. Likewise, daytime sleep was associated with cessation of GD effects and confinement of LD effects to the auditory cortex. Results support the generalizability of changes in auditory novelty processing to dexmedetomidine and sleep. Preservation of LD effects in the auditory cortex indicates that the auditory cortex continues to monitor the environment following loss of responsiveness.</p>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.70181\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70181\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70181","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

识别意识丧失的神经特征是神经科学的一个主要目标。局部/全局听觉新颖性范式在描述唤醒状态下的感觉加工过程中非常有用。异丙酚在亚催眠剂量下抑制对长期新颖性(全局偏差,GD)的反应;听觉皮层外对短期新奇事物(局部偏差,LD)反应的抑制可能是意识丧失的生物标志物。右美托咪定是一种α -2肾上腺素能激动剂,可诱导睡眠样镇静。这项研究考察了异丙酚(一种gaba能药物)是否也会在右美托咪定和睡眠中发生听觉新颖性加工的变化。颅内记录在神经外科患者接受监测难治性癫痫。刺激是包含LD和GD的元音序列。在清醒、右美托咪定和睡眠时记录神经活动,并以平均诱发电位(AEP)和高伽马(70-150 Hz)功率检测。AEP反应比高γ活动分布更广泛。用异丙酚观察到的结果与右美托咪定重复。亚催眠剂量导致LD效应减弱,GD效应急剧下降。反应性丧失与听觉皮层外的LD效应丧失有关。同样,白天睡眠与GD效应的停止和LD效应对听觉皮层的限制有关。结果支持右美托咪定和睡眠对听觉新颖性加工变化的普遍性。听觉皮层保留LD效应表明听觉皮层在失去反应性后继续监测环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulation of Auditory Novelty Processing by Dexmedetomidine and Natural Sleep: A Human Intracranial Electrophysiology Study

Modulation of Auditory Novelty Processing by Dexmedetomidine and Natural Sleep: A Human Intracranial Electrophysiology Study

Identifying neural signatures of loss of consciousness is a major goal of neuroscience. The local/global auditory novelty paradigm has been useful in characterizing sensory processing across arousal states. Propofol suppresses responses to long-term novelty (global deviance, GD) at subhypnotic doses; suppression of responses to short-term novelty (local deviance, LD) outside auditory cortex may represent a biomarker of loss of consciousness. Dexmedetomidine is an alpha-2 adrenergic agonist that induces sleep-like sedation. This study examined whether the changes in auditory novelty processing observed with propofol, a GABA-ergic agent, also occur with dexmedetomidine and during sleep. Intracranial recordings were obtained in neurosurgical patients undergoing monitoring for refractory epilepsy. Stimuli were vowel sequences incorporating LD and GD. Neural activity was recorded during wakefulness, administration of dexmedetomidine, and sleep and was examined as the averaged evoked potential (AEP) and high gamma (70–150 Hz) power. AEP responses were more broadly distributed than high gamma activity. Results previously observed with propofol were replicated with dexmedetomidine. Subhypnotic doses led to decreased LD effects and a precipitous decline in GD effects. Loss of responsiveness was associated with loss of LD effects outside the auditory cortex. Likewise, daytime sleep was associated with cessation of GD effects and confinement of LD effects to the auditory cortex. Results support the generalizability of changes in auditory novelty processing to dexmedetomidine and sleep. Preservation of LD effects in the auditory cortex indicates that the auditory cortex continues to monitor the environment following loss of responsiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Neuroscience
European Journal of Neuroscience 医学-神经科学
CiteScore
7.10
自引率
5.90%
发文量
305
审稿时长
3.5 months
期刊介绍: EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信