{"title":"从稻壳中环保合成花皱二氧化硅纳米颗粒","authors":"Fatemeh Rezaei, Zainab Zahid Ahmed, Gholam Hossein Zohuri","doi":"10.1155/adv/8896690","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this study, silica nanoparticles (SiNPs) with a flower-like wrinkled morphology were synthesized via a green method using rice husk (RH) as a sustainable silica precursor. The synthesis was performed without hazardous chemicals, highlighting the environmental compatibility and cost-effectiveness of the process. The structural and physicochemical properties of the nanoparticles were characterized using FTIR, XRD, scanning electron microscopy (SEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), UV–vis, thermogravimetric analysis (TGA), and Differential scanning calorimetry (DSC) analyses. FTIR confirmed the presence of Si─O─Si and Si─OH groups, while XRD revealed that the synthesized particles exhibit a crystalline quartz structure rather than the amorphous form commonly obtained from RH. SEM images showed petal-shaped particles with hierarchical morphology. Thermal analysis indicated high stability up to 800°C. These findings suggest that the developed green synthesis method can yield structurally defined SiNPs suitable for further application in catalysis, adsorption, and nanomaterials development.</p>\n </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/adv/8896690","citationCount":"0","resultStr":"{\"title\":\"Eco-Friendly Synthesis of Flower-Wrinkle Silica Nanoparticles From Rice Husk\",\"authors\":\"Fatemeh Rezaei, Zainab Zahid Ahmed, Gholam Hossein Zohuri\",\"doi\":\"10.1155/adv/8896690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In this study, silica nanoparticles (SiNPs) with a flower-like wrinkled morphology were synthesized via a green method using rice husk (RH) as a sustainable silica precursor. The synthesis was performed without hazardous chemicals, highlighting the environmental compatibility and cost-effectiveness of the process. The structural and physicochemical properties of the nanoparticles were characterized using FTIR, XRD, scanning electron microscopy (SEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), UV–vis, thermogravimetric analysis (TGA), and Differential scanning calorimetry (DSC) analyses. FTIR confirmed the presence of Si─O─Si and Si─OH groups, while XRD revealed that the synthesized particles exhibit a crystalline quartz structure rather than the amorphous form commonly obtained from RH. SEM images showed petal-shaped particles with hierarchical morphology. Thermal analysis indicated high stability up to 800°C. These findings suggest that the developed green synthesis method can yield structurally defined SiNPs suitable for further application in catalysis, adsorption, and nanomaterials development.</p>\\n </div>\",\"PeriodicalId\":7372,\"journal\":{\"name\":\"Advances in Polymer Technology\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/adv/8896690\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Polymer Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/adv/8896690\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/adv/8896690","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Eco-Friendly Synthesis of Flower-Wrinkle Silica Nanoparticles From Rice Husk
In this study, silica nanoparticles (SiNPs) with a flower-like wrinkled morphology were synthesized via a green method using rice husk (RH) as a sustainable silica precursor. The synthesis was performed without hazardous chemicals, highlighting the environmental compatibility and cost-effectiveness of the process. The structural and physicochemical properties of the nanoparticles were characterized using FTIR, XRD, scanning electron microscopy (SEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), UV–vis, thermogravimetric analysis (TGA), and Differential scanning calorimetry (DSC) analyses. FTIR confirmed the presence of Si─O─Si and Si─OH groups, while XRD revealed that the synthesized particles exhibit a crystalline quartz structure rather than the amorphous form commonly obtained from RH. SEM images showed petal-shaped particles with hierarchical morphology. Thermal analysis indicated high stability up to 800°C. These findings suggest that the developed green synthesis method can yield structurally defined SiNPs suitable for further application in catalysis, adsorption, and nanomaterials development.
期刊介绍:
Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.