封面特征:机器学习辅助制备石墨烯负载Cu-Zn催化剂用于CO2加氢制甲醇(化学)。亚洲J. 13/2025)

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nuttapon Pisitpipathsin, Krittapong Deshsorn, Varisara Deerattrakul, Pawin Iamprasertkun
{"title":"封面特征:机器学习辅助制备石墨烯负载Cu-Zn催化剂用于CO2加氢制甲醇(化学)。亚洲J. 13/2025)","authors":"Nuttapon Pisitpipathsin,&nbsp;Krittapong Deshsorn,&nbsp;Varisara Deerattrakul,&nbsp;Pawin Iamprasertkun","doi":"10.1002/asia.202581303","DOIUrl":null,"url":null,"abstract":"<p>This study integrates machine learning with experimental validation to optimize Cu-Zn catalysts supported on nitrogen-doped graphene for CO<sub>2</sub> hydrogenation to methanol. Nitrogen doping enhances catalyst reduction and space-time yield, while decision tree analysis identifies key synthesis parameters, enabling efficient, data-driven catalyst design for improved performance and sustainability. More details can be found in article number e202500011 by Pawin Iamprasertkun and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":"20 13","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asia.202581303","citationCount":"0","resultStr":"{\"title\":\"Cover Feature: Machine Learning Assisted for Preparation of Graphene Supported Cu-Zn Catalyst for CO2 Hydrogenation to Methanol (Chem. Asian J. 13/2025)\",\"authors\":\"Nuttapon Pisitpipathsin,&nbsp;Krittapong Deshsorn,&nbsp;Varisara Deerattrakul,&nbsp;Pawin Iamprasertkun\",\"doi\":\"10.1002/asia.202581303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study integrates machine learning with experimental validation to optimize Cu-Zn catalysts supported on nitrogen-doped graphene for CO<sub>2</sub> hydrogenation to methanol. Nitrogen doping enhances catalyst reduction and space-time yield, while decision tree analysis identifies key synthesis parameters, enabling efficient, data-driven catalyst design for improved performance and sustainability. More details can be found in article number e202500011 by Pawin Iamprasertkun and co-workers.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\"20 13\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asia.202581303\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asia.202581303\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asia.202581303","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究将机器学习与实验验证相结合,以优化氮掺杂石墨烯负载的Cu-Zn催化剂,用于二氧化碳加氢制甲醇。氮掺杂提高了催化剂的还原率和时空产率,而决策树分析确定了关键的合成参数,从而实现了高效、数据驱动的催化剂设计,从而提高了催化剂的性能和可持续性。更多细节可以在Pawin Iamprasertkun及其同事的文章编号e202500011中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cover Feature: Machine Learning Assisted for Preparation of Graphene Supported Cu-Zn Catalyst for CO2 Hydrogenation to Methanol (Chem. Asian J. 13/2025)

Cover Feature: Machine Learning Assisted for Preparation of Graphene Supported Cu-Zn Catalyst for CO2 Hydrogenation to Methanol (Chem. Asian J. 13/2025)

This study integrates machine learning with experimental validation to optimize Cu-Zn catalysts supported on nitrogen-doped graphene for CO2 hydrogenation to methanol. Nitrogen doping enhances catalyst reduction and space-time yield, while decision tree analysis identifies key synthesis parameters, enabling efficient, data-driven catalyst design for improved performance and sustainability. More details can be found in article number e202500011 by Pawin Iamprasertkun and co-workers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信