{"title":"研究富缺陷V2O5/MWCNTs异质结构对提高超级电容器电化学性能的协同作用","authors":"Usama Younas, Shakeel Abbas, Amina Zafar, Saqib Javed, Atia Khalid, Shafqat Hussain, Shafqat Karim, Yasir Faiz, Faisal Faiz, Amna Safdar, Amjad Nisar and Mashkoor Ahmad","doi":"10.1039/D5RA03394B","DOIUrl":null,"url":null,"abstract":"<p >The synergistic effect of V<small><sub>2</sub></small>O<small><sub>5</sub></small> and multiwall carbon nanotubes (MWCNTs) offers a promising strategy to enhance the redox activity of electrode materials for high-performance supercapacitors. In this study, a simple, scalable, and cost-effective hydrothermal approach is employed to synthesize V<small><sub>2</sub></small>O<small><sub>5</sub></small>/MWCNTs heterostructure. The resulting heterostructure exhibits rich oxygen vacancy defects, improved conductivity, favorable structural characteristics, and abundant active sites. DFT study further demonstrate the excellent kinetics of V<small><sub>2</sub></small>O<small><sub>5</sub></small>/MWCNTs as compared to pristine V<small><sub>2</sub></small>O<small><sub>5</sub></small> structure. Electrochemical analysis reveals that V<small><sub>2</sub></small>O<small><sub>5</sub></small>/MWCNTs electrode achieves good capacitance of 820 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small>, significantly outperforming pristine V<small><sub>2</sub></small>O<small><sub>5</sub></small> (463 F g<small><sup>−1</sup></small>) in a 1.0 M neutral Na<small><sub>2</sub></small>SO<small><sub>4</sub></small> solution. Moreover, the developed supercapacitor (V<small><sub>2</sub></small>O<small><sub>5</sub></small>/MWCNTs//AC) device shows a capacitance of 125 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small>. The device also delivers an efficient energy density of 39 Wh kg<small><sup>−1</sup></small> at a power density of 805 W kg<small><sup>−1</sup></small>. Additionally, it exhibits outstanding cycling stability, retaining 93% of its capacity after 8000 cycles at 3 A g<small><sup>−1</sup></small>. These exceptional results highlight the potential of the V<small><sub>2</sub></small>O<small><sub>5</sub></small>/MWCNTs heterostructure as a viable electrode material for future energy devices.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 30","pages":" 24760-24768"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03394b?page=search","citationCount":"0","resultStr":"{\"title\":\"Investigating the synergistic effect of defect rich V2O5/MWCNTs heterostructure for improved electrochemical performance of supercapacitors†\",\"authors\":\"Usama Younas, Shakeel Abbas, Amina Zafar, Saqib Javed, Atia Khalid, Shafqat Hussain, Shafqat Karim, Yasir Faiz, Faisal Faiz, Amna Safdar, Amjad Nisar and Mashkoor Ahmad\",\"doi\":\"10.1039/D5RA03394B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The synergistic effect of V<small><sub>2</sub></small>O<small><sub>5</sub></small> and multiwall carbon nanotubes (MWCNTs) offers a promising strategy to enhance the redox activity of electrode materials for high-performance supercapacitors. In this study, a simple, scalable, and cost-effective hydrothermal approach is employed to synthesize V<small><sub>2</sub></small>O<small><sub>5</sub></small>/MWCNTs heterostructure. The resulting heterostructure exhibits rich oxygen vacancy defects, improved conductivity, favorable structural characteristics, and abundant active sites. DFT study further demonstrate the excellent kinetics of V<small><sub>2</sub></small>O<small><sub>5</sub></small>/MWCNTs as compared to pristine V<small><sub>2</sub></small>O<small><sub>5</sub></small> structure. Electrochemical analysis reveals that V<small><sub>2</sub></small>O<small><sub>5</sub></small>/MWCNTs electrode achieves good capacitance of 820 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small>, significantly outperforming pristine V<small><sub>2</sub></small>O<small><sub>5</sub></small> (463 F g<small><sup>−1</sup></small>) in a 1.0 M neutral Na<small><sub>2</sub></small>SO<small><sub>4</sub></small> solution. Moreover, the developed supercapacitor (V<small><sub>2</sub></small>O<small><sub>5</sub></small>/MWCNTs//AC) device shows a capacitance of 125 F g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small>. The device also delivers an efficient energy density of 39 Wh kg<small><sup>−1</sup></small> at a power density of 805 W kg<small><sup>−1</sup></small>. Additionally, it exhibits outstanding cycling stability, retaining 93% of its capacity after 8000 cycles at 3 A g<small><sup>−1</sup></small>. These exceptional results highlight the potential of the V<small><sub>2</sub></small>O<small><sub>5</sub></small>/MWCNTs heterostructure as a viable electrode material for future energy devices.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 30\",\"pages\":\" 24760-24768\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03394b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03394b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03394b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
V2O5和多壁碳纳米管(MWCNTs)的协同效应为提高高性能超级电容器电极材料的氧化还原活性提供了一种很有前景的策略。在本研究中,采用一种简单、可扩展且经济高效的水热方法合成了V2O5/MWCNTs异质结构。所得异质结构具有丰富的氧空位缺陷、提高的导电性、良好的结构特性和丰富的活性位点。DFT研究进一步证明了与原始V2O5结构相比,V2O5/MWCNTs具有优异的动力学。电化学分析表明,V2O5/MWCNTs电极在1 A g−1时获得820 F g−1的良好电容,显著优于在1.0 M中性Na2SO4溶液中的原始V2O5 (463 F g−1)。此外,所开发的超级电容器(V2O5/MWCNTs//AC)器件在1 a g−1时的电容为125 F g−1。在805w kg−1的功率密度下,器件的有效能量密度为39wh kg−1。此外,它还表现出出色的循环稳定性,在3a g−1下循环8000次后仍能保持93%的容量。这些卓越的结果突出了V2O5/MWCNTs异质结构作为未来能源器件可行的电极材料的潜力。
Investigating the synergistic effect of defect rich V2O5/MWCNTs heterostructure for improved electrochemical performance of supercapacitors†
The synergistic effect of V2O5 and multiwall carbon nanotubes (MWCNTs) offers a promising strategy to enhance the redox activity of electrode materials for high-performance supercapacitors. In this study, a simple, scalable, and cost-effective hydrothermal approach is employed to synthesize V2O5/MWCNTs heterostructure. The resulting heterostructure exhibits rich oxygen vacancy defects, improved conductivity, favorable structural characteristics, and abundant active sites. DFT study further demonstrate the excellent kinetics of V2O5/MWCNTs as compared to pristine V2O5 structure. Electrochemical analysis reveals that V2O5/MWCNTs electrode achieves good capacitance of 820 F g−1 at 1 A g−1, significantly outperforming pristine V2O5 (463 F g−1) in a 1.0 M neutral Na2SO4 solution. Moreover, the developed supercapacitor (V2O5/MWCNTs//AC) device shows a capacitance of 125 F g−1 at 1 A g−1. The device also delivers an efficient energy density of 39 Wh kg−1 at a power density of 805 W kg−1. Additionally, it exhibits outstanding cycling stability, retaining 93% of its capacity after 8000 cycles at 3 A g−1. These exceptional results highlight the potential of the V2O5/MWCNTs heterostructure as a viable electrode material for future energy devices.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.