元启发式算法的趋势感知机制

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Junbo Jacob Lian , Kaichen Ouyang , Rui Zhong , Yujun Zhang , Shipeng Luo , Ling Ma , Xincan Wu , Huiling Chen
{"title":"元启发式算法的趋势感知机制","authors":"Junbo Jacob Lian ,&nbsp;Kaichen Ouyang ,&nbsp;Rui Zhong ,&nbsp;Yujun Zhang ,&nbsp;Shipeng Luo ,&nbsp;Ling Ma ,&nbsp;Xincan Wu ,&nbsp;Huiling Chen","doi":"10.1016/j.asoc.2025.113505","DOIUrl":null,"url":null,"abstract":"<div><div>In metaheuristic algorithms, historical search-position data often remain underutilized despite their potential to reveal valuable movement trends and promising search directions. To address this limitation, we propose the Trend-Aware Mechanism (TAM), which leverages historical position information to enhance the position updating process. TAM identifies the primary direction of movement by deriving a trend line from the population’s positions over the two most recent iterations. It evaluates candidate optimal positions by assessing the fitness of the K nearest points along this trend line. To effectively balance exploration and exploitation, TAM employs an adaptive covariance mechanism to generate high-dimensional random vectors, dynamically adjusting the update strategies. We integrate TAM with four prominent metaheuristic algorithms – PSO, SHADE, JaDE, and CMA-ES – and conduct an extensive parameter sensitivity analysis to ensure robustness. Comparative evaluations across five performance metrics demonstrate that TAM significantly improves search efficiency and consistently achieves superior results on standard benchmark functions. Moreover, TAM’s practical applicability is validated through real-world problems in engineering design, feature selection, and photovoltaic model parameter extraction. The open-source implementation of TAM will be publicly available at <span><span>https://github.com/junbolian/Trend-Aware-Mechanism</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"182 ","pages":"Article 113505"},"PeriodicalIF":7.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trend-Aware Mechanism for Metaheuristic Algorithms\",\"authors\":\"Junbo Jacob Lian ,&nbsp;Kaichen Ouyang ,&nbsp;Rui Zhong ,&nbsp;Yujun Zhang ,&nbsp;Shipeng Luo ,&nbsp;Ling Ma ,&nbsp;Xincan Wu ,&nbsp;Huiling Chen\",\"doi\":\"10.1016/j.asoc.2025.113505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In metaheuristic algorithms, historical search-position data often remain underutilized despite their potential to reveal valuable movement trends and promising search directions. To address this limitation, we propose the Trend-Aware Mechanism (TAM), which leverages historical position information to enhance the position updating process. TAM identifies the primary direction of movement by deriving a trend line from the population’s positions over the two most recent iterations. It evaluates candidate optimal positions by assessing the fitness of the K nearest points along this trend line. To effectively balance exploration and exploitation, TAM employs an adaptive covariance mechanism to generate high-dimensional random vectors, dynamically adjusting the update strategies. We integrate TAM with four prominent metaheuristic algorithms – PSO, SHADE, JaDE, and CMA-ES – and conduct an extensive parameter sensitivity analysis to ensure robustness. Comparative evaluations across five performance metrics demonstrate that TAM significantly improves search efficiency and consistently achieves superior results on standard benchmark functions. Moreover, TAM’s practical applicability is validated through real-world problems in engineering design, feature selection, and photovoltaic model parameter extraction. The open-source implementation of TAM will be publicly available at <span><span>https://github.com/junbolian/Trend-Aware-Mechanism</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"182 \",\"pages\":\"Article 113505\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625008166\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625008166","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在元启发式算法中,尽管历史搜索位置数据具有揭示有价值的移动趋势和有希望的搜索方向的潜力,但它们通常仍未得到充分利用。为了解决这一限制,我们提出了趋势感知机制(TAM),该机制利用历史位置信息来增强位置更新过程。TAM通过在最近的两次迭代中从人口的位置导出趋势线来确定主要的运动方向。它通过评估沿着这条趋势线的K个最近点的适应度来评估候选最优位置。为了有效平衡探索和开发,TAM采用自适应协方差机制生成高维随机向量,动态调整更新策略。我们将TAM与四种著名的元启发式算法(PSO、SHADE、JaDE和CMA-ES)集成,并进行了广泛的参数敏感性分析,以确保鲁棒性。跨五个性能指标的比较评估表明,TAM显著提高了搜索效率,并始终在标准基准函数上获得优越的结果。并通过工程设计、特征选择、光伏模型参数提取等实际问题验证TAM的实用性。TAM的开源实现将在https://github.com/junbolian/Trend-Aware-Mechanism上公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trend-Aware Mechanism for Metaheuristic Algorithms
In metaheuristic algorithms, historical search-position data often remain underutilized despite their potential to reveal valuable movement trends and promising search directions. To address this limitation, we propose the Trend-Aware Mechanism (TAM), which leverages historical position information to enhance the position updating process. TAM identifies the primary direction of movement by deriving a trend line from the population’s positions over the two most recent iterations. It evaluates candidate optimal positions by assessing the fitness of the K nearest points along this trend line. To effectively balance exploration and exploitation, TAM employs an adaptive covariance mechanism to generate high-dimensional random vectors, dynamically adjusting the update strategies. We integrate TAM with four prominent metaheuristic algorithms – PSO, SHADE, JaDE, and CMA-ES – and conduct an extensive parameter sensitivity analysis to ensure robustness. Comparative evaluations across five performance metrics demonstrate that TAM significantly improves search efficiency and consistently achieves superior results on standard benchmark functions. Moreover, TAM’s practical applicability is validated through real-world problems in engineering design, feature selection, and photovoltaic model parameter extraction. The open-source implementation of TAM will be publicly available at https://github.com/junbolian/Trend-Aware-Mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信