{"title":"测定免疫反应重要代谢调节因子顺式乌头酸脱羧酶活性的光谱方法","authors":"Kevin Knowlan, Cody L. Hoop, Nadya I. Tarasova","doi":"10.1016/j.ab.2025.115944","DOIUrl":null,"url":null,"abstract":"<div><div><em>Cis</em>-aconitate decarboxylase (ACOD1) is a key enzyme converting <em>cis</em>-aconitate to itaconate, which has therapeutic potential for inflammatory diseases. Existing methods to measure ACOD1 activity and itaconate are often expensive and complex. We developed a novel, high-throughput spectrophotometric assay using the Fürth-Herrmann reaction. Our method quantifies ACOD1-catalyzed itaconate production by leveraging distinct absorbance ratios of <em>cis</em>-aconitate and itaconate at 386 nm and 440 nm. We optimized parameters, characterized human ACOD1 kinetics, and determined an IC<sub>50</sub> for citraconate consistent with previous reports. This simple, fast, and reliable assay, requiring only a UV–Vis spectrophotometer, will accelerate screening for ACOD1 modulators, speeding up therapeutic development.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"706 ","pages":"Article 115944"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopic method for measuring activity of cis-aconitate decarboxylase, an important metabolic regulator of immune responses\",\"authors\":\"Kevin Knowlan, Cody L. Hoop, Nadya I. Tarasova\",\"doi\":\"10.1016/j.ab.2025.115944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Cis</em>-aconitate decarboxylase (ACOD1) is a key enzyme converting <em>cis</em>-aconitate to itaconate, which has therapeutic potential for inflammatory diseases. Existing methods to measure ACOD1 activity and itaconate are often expensive and complex. We developed a novel, high-throughput spectrophotometric assay using the Fürth-Herrmann reaction. Our method quantifies ACOD1-catalyzed itaconate production by leveraging distinct absorbance ratios of <em>cis</em>-aconitate and itaconate at 386 nm and 440 nm. We optimized parameters, characterized human ACOD1 kinetics, and determined an IC<sub>50</sub> for citraconate consistent with previous reports. This simple, fast, and reliable assay, requiring only a UV–Vis spectrophotometer, will accelerate screening for ACOD1 modulators, speeding up therapeutic development.</div></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"706 \",\"pages\":\"Article 115944\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269725001836\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269725001836","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Spectroscopic method for measuring activity of cis-aconitate decarboxylase, an important metabolic regulator of immune responses
Cis-aconitate decarboxylase (ACOD1) is a key enzyme converting cis-aconitate to itaconate, which has therapeutic potential for inflammatory diseases. Existing methods to measure ACOD1 activity and itaconate are often expensive and complex. We developed a novel, high-throughput spectrophotometric assay using the Fürth-Herrmann reaction. Our method quantifies ACOD1-catalyzed itaconate production by leveraging distinct absorbance ratios of cis-aconitate and itaconate at 386 nm and 440 nm. We optimized parameters, characterized human ACOD1 kinetics, and determined an IC50 for citraconate consistent with previous reports. This simple, fast, and reliable assay, requiring only a UV–Vis spectrophotometer, will accelerate screening for ACOD1 modulators, speeding up therapeutic development.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.