{"title":"在天气风和非天气风的作用下,通过气动弹性代替物进行桥面的气动结构设计,包括形状、减速速度和平均迎角","authors":"Sumit Verma, Miguel Cid Montoya, Ashutosh Mishra","doi":"10.1016/j.jweia.2025.106133","DOIUrl":null,"url":null,"abstract":"<div><div>Wind-sensitive bridges are commonly designed based on their aeroelastic responses under synoptic winds. However, a holistic aero-structural design framework must address all potential wind scenarios along the bridge life cycle, including non-synoptic events and synoptic winds with relevant variations in the mean angle of attack due to wind-induced static deck deformation or complex terrain effects. This requires the evaluation of the aeroelastic responses considering the sensitivity of the fluid-structure interaction parameters to the wind angle of attack. Aiming at properly modeling these effects within design frameworks, this study proposes harnessing a multi-directional aeroelastic Kriging surrogate trained with forced vibration CFD simulations to emulate the flutter derivatives as a function of the deck shape, reduced velocity, and mean angle of attack. A bridge deck with a variable depth ranging from streamlined to bluff configurations is studied in detail, showing drastic changes in relevant flutter derivatives. The deck shape drives the impact of the mean angle of attack in some critical flutter derivatives, including the occurrence of <em>A</em><sub><em>2</em></sub><em>∗</em> sign flipping, with its implications in the torsional stability. The resulting aeroelastic surrogate is conceived to be integrated into aero-structural optimization frameworks for optimally shaping bridge decks under synoptic and non-synoptic wind scenarios.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"265 ","pages":"Article 106133"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aero-structural design of bridge decks under synoptic and non-synoptic winds via aeroelastic surrogates comprising shape, reduced velocity, and mean angle of attack\",\"authors\":\"Sumit Verma, Miguel Cid Montoya, Ashutosh Mishra\",\"doi\":\"10.1016/j.jweia.2025.106133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wind-sensitive bridges are commonly designed based on their aeroelastic responses under synoptic winds. However, a holistic aero-structural design framework must address all potential wind scenarios along the bridge life cycle, including non-synoptic events and synoptic winds with relevant variations in the mean angle of attack due to wind-induced static deck deformation or complex terrain effects. This requires the evaluation of the aeroelastic responses considering the sensitivity of the fluid-structure interaction parameters to the wind angle of attack. Aiming at properly modeling these effects within design frameworks, this study proposes harnessing a multi-directional aeroelastic Kriging surrogate trained with forced vibration CFD simulations to emulate the flutter derivatives as a function of the deck shape, reduced velocity, and mean angle of attack. A bridge deck with a variable depth ranging from streamlined to bluff configurations is studied in detail, showing drastic changes in relevant flutter derivatives. The deck shape drives the impact of the mean angle of attack in some critical flutter derivatives, including the occurrence of <em>A</em><sub><em>2</em></sub><em>∗</em> sign flipping, with its implications in the torsional stability. The resulting aeroelastic surrogate is conceived to be integrated into aero-structural optimization frameworks for optimally shaping bridge decks under synoptic and non-synoptic wind scenarios.</div></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"265 \",\"pages\":\"Article 106133\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610525001291\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610525001291","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Aero-structural design of bridge decks under synoptic and non-synoptic winds via aeroelastic surrogates comprising shape, reduced velocity, and mean angle of attack
Wind-sensitive bridges are commonly designed based on their aeroelastic responses under synoptic winds. However, a holistic aero-structural design framework must address all potential wind scenarios along the bridge life cycle, including non-synoptic events and synoptic winds with relevant variations in the mean angle of attack due to wind-induced static deck deformation or complex terrain effects. This requires the evaluation of the aeroelastic responses considering the sensitivity of the fluid-structure interaction parameters to the wind angle of attack. Aiming at properly modeling these effects within design frameworks, this study proposes harnessing a multi-directional aeroelastic Kriging surrogate trained with forced vibration CFD simulations to emulate the flutter derivatives as a function of the deck shape, reduced velocity, and mean angle of attack. A bridge deck with a variable depth ranging from streamlined to bluff configurations is studied in detail, showing drastic changes in relevant flutter derivatives. The deck shape drives the impact of the mean angle of attack in some critical flutter derivatives, including the occurrence of A2∗ sign flipping, with its implications in the torsional stability. The resulting aeroelastic surrogate is conceived to be integrated into aero-structural optimization frameworks for optimally shaping bridge decks under synoptic and non-synoptic wind scenarios.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.