Ya Xue , Ying Li , Fei Zhong , Zhongxiang Bai , Pan Wang , Kui Li , Fan Lei , Zhoukun He , Yang Yang , Wei Feng , Xulin Yang
{"title":"含邻苯二腈生物基苯并恶嗪:非溶剂合成、固化行为及热解机理","authors":"Ya Xue , Ying Li , Fei Zhong , Zhongxiang Bai , Pan Wang , Kui Li , Fan Lei , Zhoukun He , Yang Yang , Wei Feng , Xulin Yang","doi":"10.1016/j.polymdegradstab.2025.111542","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional benzoxazines are largely constrained by the dependence on non-renewable resources, solvent-based synthesis, and insufficient thermal resistance. This study presents a novel high-performance bio-based benzoxazine containing phthalonitrile (BZPN), synthesized via melt condensation using eugenol, 3-aminophenoxyphthalonitrile, and paraformaldehyde. The chemical formula of BZPN was validated by FTIR, ¹H and ¹³C NMR analyses. The curing of BZPN involves ring-opening polymerization of oxazine group and ring-forming polymerization from phthalonitrile unit, yielding polybenzoxazines and heteroaromatics respectively. Combined TG-DTG, TG-FTIR with TG-MS technique, the three-stage thermal pyrolysis mechanism of BZPN was proposed. The initial decomposition (<em>T<sub>dm1</sub></em>=395 °C) occurs through the cleavage of C<img>N, C<img>O, and C<img>C bonds in the polybenzoxazine, releasing NH₃, H₂O, CH₄, and CO₂. The second stage (<em>T<sub>dm2</sub></em>=485 °C) involves the cleavage of C<img>O and C<img>C bonds in the heteroaromatic networks by releasing NH₃, H₂O, CH₄, and CO₂. The final carbonization stage (<em>T<sub>dm3</sub></em>=615 °C) includes the transformation of highly aromatic compounds into graphite. With the facile solvent-less synthesis method and superior comprehensive properties (compressive strength: >220 MPa, <em>T<sub>g</sub></em>: >375 °C, <em>T<sub>d5</sub></em>: >390 °C, and <em>C<sub>y</sub></em>: 72 % at 800 °C), bio-based BZPN is a promising high-performance thermosetting resin for advanced industrial and engineering applications.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"241 ","pages":"Article 111542"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-based benzoxazine containing phthalonitrile: Nonsolvent synthesis, curing behavior and pyrolysis mechanism\",\"authors\":\"Ya Xue , Ying Li , Fei Zhong , Zhongxiang Bai , Pan Wang , Kui Li , Fan Lei , Zhoukun He , Yang Yang , Wei Feng , Xulin Yang\",\"doi\":\"10.1016/j.polymdegradstab.2025.111542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional benzoxazines are largely constrained by the dependence on non-renewable resources, solvent-based synthesis, and insufficient thermal resistance. This study presents a novel high-performance bio-based benzoxazine containing phthalonitrile (BZPN), synthesized via melt condensation using eugenol, 3-aminophenoxyphthalonitrile, and paraformaldehyde. The chemical formula of BZPN was validated by FTIR, ¹H and ¹³C NMR analyses. The curing of BZPN involves ring-opening polymerization of oxazine group and ring-forming polymerization from phthalonitrile unit, yielding polybenzoxazines and heteroaromatics respectively. Combined TG-DTG, TG-FTIR with TG-MS technique, the three-stage thermal pyrolysis mechanism of BZPN was proposed. The initial decomposition (<em>T<sub>dm1</sub></em>=395 °C) occurs through the cleavage of C<img>N, C<img>O, and C<img>C bonds in the polybenzoxazine, releasing NH₃, H₂O, CH₄, and CO₂. The second stage (<em>T<sub>dm2</sub></em>=485 °C) involves the cleavage of C<img>O and C<img>C bonds in the heteroaromatic networks by releasing NH₃, H₂O, CH₄, and CO₂. The final carbonization stage (<em>T<sub>dm3</sub></em>=615 °C) includes the transformation of highly aromatic compounds into graphite. With the facile solvent-less synthesis method and superior comprehensive properties (compressive strength: >220 MPa, <em>T<sub>g</sub></em>: >375 °C, <em>T<sub>d5</sub></em>: >390 °C, and <em>C<sub>y</sub></em>: 72 % at 800 °C), bio-based BZPN is a promising high-performance thermosetting resin for advanced industrial and engineering applications.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"241 \",\"pages\":\"Article 111542\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391025003714\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025003714","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Traditional benzoxazines are largely constrained by the dependence on non-renewable resources, solvent-based synthesis, and insufficient thermal resistance. This study presents a novel high-performance bio-based benzoxazine containing phthalonitrile (BZPN), synthesized via melt condensation using eugenol, 3-aminophenoxyphthalonitrile, and paraformaldehyde. The chemical formula of BZPN was validated by FTIR, ¹H and ¹³C NMR analyses. The curing of BZPN involves ring-opening polymerization of oxazine group and ring-forming polymerization from phthalonitrile unit, yielding polybenzoxazines and heteroaromatics respectively. Combined TG-DTG, TG-FTIR with TG-MS technique, the three-stage thermal pyrolysis mechanism of BZPN was proposed. The initial decomposition (Tdm1=395 °C) occurs through the cleavage of CN, CO, and CC bonds in the polybenzoxazine, releasing NH₃, H₂O, CH₄, and CO₂. The second stage (Tdm2=485 °C) involves the cleavage of CO and CC bonds in the heteroaromatic networks by releasing NH₃, H₂O, CH₄, and CO₂. The final carbonization stage (Tdm3=615 °C) includes the transformation of highly aromatic compounds into graphite. With the facile solvent-less synthesis method and superior comprehensive properties (compressive strength: >220 MPa, Tg: >375 °C, Td5: >390 °C, and Cy: 72 % at 800 °C), bio-based BZPN is a promising high-performance thermosetting resin for advanced industrial and engineering applications.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.