Dimitris Gkoulis, Anargyros Tsadimas, George Kousiouris, Cleopatra Bardaki, Mara Nikolaidou
{"title":"基于边缘容错的实时数据输入性能研究——以环境数据为例","authors":"Dimitris Gkoulis, Anargyros Tsadimas, George Kousiouris, Cleopatra Bardaki, Mara Nikolaidou","doi":"10.1016/j.simpat.2025.103178","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time data streams from edge-based IoT sensors are frequently affected by transmission errors, sensor faults, and network disruptions, leading to missing or incomplete data. This paper investigates the application of lightweight, real-time imputation methods to enhance fault tolerance in edge computing systems. To this end, we propose to integrate a modular imputation engine on edge system supporting lightweight forecasting models selected for their computational efficiency and suitability to operate on real-time data streams. To assess the performance of different popular lightweight forecasting models for real-time applications, a simulation framework is introduced that simulates the operation of the imputation engine, replicates sensor failure scenarios and allows controlled testing on real-world systems. Imputation accuracy is evaluated using Mean Absolute Error (MAE), 95th percentile error, and maximum error, with results benchmarked against sensor tolerance thresholds. The simulation framework is used to explore imputation on environmental data based on observations collected from a weather station. The findings show that Holt–Winters Exponential Smoothing delivers the highest accuracy for real-time imputation across environmental variables, outperforming simpler models suited only for short-term gaps. Errors grow with longer forecasts, confirming imputation as a temporary solution. Evaluations against sensor-specific thresholds offer practical insights, and execution profiling proves these models are lightweight enough for deployment on low-power edge devices, enabling real-time, fault-tolerant monitoring without cloud dependence.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"144 ","pages":"Article 103178"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the performance of real-time data imputation to enhance fault tolerance on the edge: A study on environmental data\",\"authors\":\"Dimitris Gkoulis, Anargyros Tsadimas, George Kousiouris, Cleopatra Bardaki, Mara Nikolaidou\",\"doi\":\"10.1016/j.simpat.2025.103178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Real-time data streams from edge-based IoT sensors are frequently affected by transmission errors, sensor faults, and network disruptions, leading to missing or incomplete data. This paper investigates the application of lightweight, real-time imputation methods to enhance fault tolerance in edge computing systems. To this end, we propose to integrate a modular imputation engine on edge system supporting lightweight forecasting models selected for their computational efficiency and suitability to operate on real-time data streams. To assess the performance of different popular lightweight forecasting models for real-time applications, a simulation framework is introduced that simulates the operation of the imputation engine, replicates sensor failure scenarios and allows controlled testing on real-world systems. Imputation accuracy is evaluated using Mean Absolute Error (MAE), 95th percentile error, and maximum error, with results benchmarked against sensor tolerance thresholds. The simulation framework is used to explore imputation on environmental data based on observations collected from a weather station. The findings show that Holt–Winters Exponential Smoothing delivers the highest accuracy for real-time imputation across environmental variables, outperforming simpler models suited only for short-term gaps. Errors grow with longer forecasts, confirming imputation as a temporary solution. Evaluations against sensor-specific thresholds offer practical insights, and execution profiling proves these models are lightweight enough for deployment on low-power edge devices, enabling real-time, fault-tolerant monitoring without cloud dependence.</div></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"144 \",\"pages\":\"Article 103178\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X25001133\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25001133","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Exploring the performance of real-time data imputation to enhance fault tolerance on the edge: A study on environmental data
Real-time data streams from edge-based IoT sensors are frequently affected by transmission errors, sensor faults, and network disruptions, leading to missing or incomplete data. This paper investigates the application of lightweight, real-time imputation methods to enhance fault tolerance in edge computing systems. To this end, we propose to integrate a modular imputation engine on edge system supporting lightweight forecasting models selected for their computational efficiency and suitability to operate on real-time data streams. To assess the performance of different popular lightweight forecasting models for real-time applications, a simulation framework is introduced that simulates the operation of the imputation engine, replicates sensor failure scenarios and allows controlled testing on real-world systems. Imputation accuracy is evaluated using Mean Absolute Error (MAE), 95th percentile error, and maximum error, with results benchmarked against sensor tolerance thresholds. The simulation framework is used to explore imputation on environmental data based on observations collected from a weather station. The findings show that Holt–Winters Exponential Smoothing delivers the highest accuracy for real-time imputation across environmental variables, outperforming simpler models suited only for short-term gaps. Errors grow with longer forecasts, confirming imputation as a temporary solution. Evaluations against sensor-specific thresholds offer practical insights, and execution profiling proves these models are lightweight enough for deployment on low-power edge devices, enabling real-time, fault-tolerant monitoring without cloud dependence.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.