A. Bisciotti , L. Mancini , A. Viani , V. Zalar Serjun , A. Mladenovic , G. Cruciani
{"title":"评估再生混凝土骨料的多尺度x射线技术:从再生骨料中剩余水泥的XRPD分析到混凝土微观结构的微ct成像","authors":"A. Bisciotti , L. Mancini , A. Viani , V. Zalar Serjun , A. Mladenovic , G. Cruciani","doi":"10.1016/j.dibe.2025.100709","DOIUrl":null,"url":null,"abstract":"<div><div>The content of leftover cement paste is a crucial parameter for determining recycled aggregates quality. Various methods assess this, including wet techniques (acid dissolution, chemical degradation, water absorption), physical approaches (freeze-thaw cycles, mechanical shredding, oven-dried density, thermal disaggregation), and spectroscopic or microscopy analyses. However, these methods often lack accuracy, are time-consuming, or depend on operator skill. A novel X-ray Powder Diffraction and Rietveld quantitative phase analysis approach is introduced to improve measurements precision. Results are compared with multi-scale analyses (microscopy, X-ray computed tomography, mechanical testing) on recycled aggregate concrete specimens. Findings highlight a strong correlation between leftover cement paste content and key concrete properties, including microstructure, hydration products, and mechanical performance. This study confirms that leftover cement paste content is a decisive factor in recycled concrete aggregate properties, and that the proposed method offers a rapid and reliable approach to control this parameter.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"23 ","pages":"Article 100709"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale X-ray techniques for assessing recycled concrete aggregate: from XRPD analysis of leftover cement in recycled aggregates to micro-CT imaging of concrete microstructure\",\"authors\":\"A. Bisciotti , L. Mancini , A. Viani , V. Zalar Serjun , A. Mladenovic , G. Cruciani\",\"doi\":\"10.1016/j.dibe.2025.100709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The content of leftover cement paste is a crucial parameter for determining recycled aggregates quality. Various methods assess this, including wet techniques (acid dissolution, chemical degradation, water absorption), physical approaches (freeze-thaw cycles, mechanical shredding, oven-dried density, thermal disaggregation), and spectroscopic or microscopy analyses. However, these methods often lack accuracy, are time-consuming, or depend on operator skill. A novel X-ray Powder Diffraction and Rietveld quantitative phase analysis approach is introduced to improve measurements precision. Results are compared with multi-scale analyses (microscopy, X-ray computed tomography, mechanical testing) on recycled aggregate concrete specimens. Findings highlight a strong correlation between leftover cement paste content and key concrete properties, including microstructure, hydration products, and mechanical performance. This study confirms that leftover cement paste content is a decisive factor in recycled concrete aggregate properties, and that the proposed method offers a rapid and reliable approach to control this parameter.</div></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":\"23 \",\"pages\":\"Article 100709\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165925001097\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165925001097","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Multi-scale X-ray techniques for assessing recycled concrete aggregate: from XRPD analysis of leftover cement in recycled aggregates to micro-CT imaging of concrete microstructure
The content of leftover cement paste is a crucial parameter for determining recycled aggregates quality. Various methods assess this, including wet techniques (acid dissolution, chemical degradation, water absorption), physical approaches (freeze-thaw cycles, mechanical shredding, oven-dried density, thermal disaggregation), and spectroscopic or microscopy analyses. However, these methods often lack accuracy, are time-consuming, or depend on operator skill. A novel X-ray Powder Diffraction and Rietveld quantitative phase analysis approach is introduced to improve measurements precision. Results are compared with multi-scale analyses (microscopy, X-ray computed tomography, mechanical testing) on recycled aggregate concrete specimens. Findings highlight a strong correlation between leftover cement paste content and key concrete properties, including microstructure, hydration products, and mechanical performance. This study confirms that leftover cement paste content is a decisive factor in recycled concrete aggregate properties, and that the proposed method offers a rapid and reliable approach to control this parameter.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.