{"title":"基于SCC-DFTB参数化方法的黄铜矿和黄铁矿浮选面大系统研究","authors":"Jianhua Chen, Yibing Zhang","doi":"10.1016/j.ijmst.2025.06.004","DOIUrl":null,"url":null,"abstract":"In recent years, the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress. However, current computational methods are limited by the small size of their systems and insufficient consideration of hydration and temperature effects, making it difficult to fully replicate the real flotation environment of chalcopyrite and pyrite. In this study, we employed the self-consistent charge density functional tight-binding (SCC-DFTB) parameterization method to develop a parameter set, CuFeOrg, which includes the interactions between Cu-Fe-C-H-O-N-S-P-Zn elements, to investigate the surface interactions in large-scale flotation systems of chalcopyrite and pyrite. The results of bulk modulus, atomic displacement, band structure, surface relaxation, surface Mulliken charge distribution, and adsorption tests of typical flotation reagents on mineral surfaces demonstrate that CuFeOrg achieves DFT-level accuracy while significantly outperforming DFT in computational efficiency. By constructing large-scale hydration systems of mineral surfaces, as well as large-scale systems incorporating the combined interactions of mineral surfaces, flotation reagents, and hydration, we more realistically reproduce the actual flotation environment. Furthermore, the dynamic analysis results are consistent with mineral surface contact angle experiments. Additionally, CuFeOrg lays the foundation for future studies of more complex and diverse chalcopyrite and pyrite flotation surface systems.","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"12 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large system study of chalcopyrite and pyrite flotation surfaces based on SCC-DFTB parameterization method\",\"authors\":\"Jianhua Chen, Yibing Zhang\",\"doi\":\"10.1016/j.ijmst.2025.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress. However, current computational methods are limited by the small size of their systems and insufficient consideration of hydration and temperature effects, making it difficult to fully replicate the real flotation environment of chalcopyrite and pyrite. In this study, we employed the self-consistent charge density functional tight-binding (SCC-DFTB) parameterization method to develop a parameter set, CuFeOrg, which includes the interactions between Cu-Fe-C-H-O-N-S-P-Zn elements, to investigate the surface interactions in large-scale flotation systems of chalcopyrite and pyrite. The results of bulk modulus, atomic displacement, band structure, surface relaxation, surface Mulliken charge distribution, and adsorption tests of typical flotation reagents on mineral surfaces demonstrate that CuFeOrg achieves DFT-level accuracy while significantly outperforming DFT in computational efficiency. By constructing large-scale hydration systems of mineral surfaces, as well as large-scale systems incorporating the combined interactions of mineral surfaces, flotation reagents, and hydration, we more realistically reproduce the actual flotation environment. Furthermore, the dynamic analysis results are consistent with mineral surface contact angle experiments. Additionally, CuFeOrg lays the foundation for future studies of more complex and diverse chalcopyrite and pyrite flotation surface systems.\",\"PeriodicalId\":48625,\"journal\":{\"name\":\"International Journal of Mining Science and Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijmst.2025.06.004\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijmst.2025.06.004","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Large system study of chalcopyrite and pyrite flotation surfaces based on SCC-DFTB parameterization method
In recent years, the study of chalcopyrite and pyrite flotation surfaces using computational chemistry methods has made significant progress. However, current computational methods are limited by the small size of their systems and insufficient consideration of hydration and temperature effects, making it difficult to fully replicate the real flotation environment of chalcopyrite and pyrite. In this study, we employed the self-consistent charge density functional tight-binding (SCC-DFTB) parameterization method to develop a parameter set, CuFeOrg, which includes the interactions between Cu-Fe-C-H-O-N-S-P-Zn elements, to investigate the surface interactions in large-scale flotation systems of chalcopyrite and pyrite. The results of bulk modulus, atomic displacement, band structure, surface relaxation, surface Mulliken charge distribution, and adsorption tests of typical flotation reagents on mineral surfaces demonstrate that CuFeOrg achieves DFT-level accuracy while significantly outperforming DFT in computational efficiency. By constructing large-scale hydration systems of mineral surfaces, as well as large-scale systems incorporating the combined interactions of mineral surfaces, flotation reagents, and hydration, we more realistically reproduce the actual flotation environment. Furthermore, the dynamic analysis results are consistent with mineral surface contact angle experiments. Additionally, CuFeOrg lays the foundation for future studies of more complex and diverse chalcopyrite and pyrite flotation surface systems.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.