理想不可压缩磁流体力学的大磁场极限

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Fei Jiang , Jiawei Wang , Xin Xu
{"title":"理想不可压缩磁流体力学的大磁场极限","authors":"Fei Jiang ,&nbsp;Jiawei Wang ,&nbsp;Xin Xu","doi":"10.1016/j.aml.2025.109676","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines the large magnetic field limit for the ideal incompressible magnetohydrodynamic equations in a three-dimensional periodic domain, where the direction of the background magnetic field satisfies the Diophantine condition. Under distinct assumptions for the initial data, we rigorously justify the convergence of solutions to zero in varying topologies.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109676"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large magnetic field limit for ideal incompressible magnetohydrodynamics\",\"authors\":\"Fei Jiang ,&nbsp;Jiawei Wang ,&nbsp;Xin Xu\",\"doi\":\"10.1016/j.aml.2025.109676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper examines the large magnetic field limit for the ideal incompressible magnetohydrodynamic equations in a three-dimensional periodic domain, where the direction of the background magnetic field satisfies the Diophantine condition. Under distinct assumptions for the initial data, we rigorously justify the convergence of solutions to zero in varying topologies.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"171 \",\"pages\":\"Article 109676\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002265\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002265","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在背景磁场的丢芬图条件下,三维周期域中理想不可压缩磁流体动力学方程的大磁场极限。在不同的初始假设下,我们严格地证明了在不同拓扑下稳态解的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large magnetic field limit for ideal incompressible magnetohydrodynamics
This paper examines the large magnetic field limit for the ideal incompressible magnetohydrodynamic equations in a three-dimensional periodic domain, where the direction of the background magnetic field satisfies the Diophantine condition. Under distinct assumptions for the initial data, we rigorously justify the convergence of solutions to zero in varying topologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信