{"title":"具有收缩自聚焦核的[公式略]Schrödinger方程的多重归一化解","authors":"Wenjun Xing, Shoucai Wang, Chunyu Lei","doi":"10.1016/j.aml.2025.109679","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the multiple normalized solutions for the following Schrödinger equation <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mi>in</mi><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>N</mi><mo>⩾</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>. After establishing <span><math><msub><mrow><mrow><mo>(</mo><mi>P</mi><mi>S</mi><mo>)</mo></mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> condition for <span><math><mrow><mi>c</mi><mo><</mo><mn>0</mn></mrow></math></span> by employing the concentration compactness principle, the multiple normalized solutions are obtained by applying a critical point theorem. In addition, we consider the orbital stability of the ground state solution. Our results generalize some recent results in the literature.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109679"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple normalized solutions for Schrödinger equation in RN with shrinking self-focusing core\",\"authors\":\"Wenjun Xing, Shoucai Wang, Chunyu Lei\",\"doi\":\"10.1016/j.aml.2025.109679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the multiple normalized solutions for the following Schrödinger equation <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mi>in</mi><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>N</mi><mo>⩾</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>. After establishing <span><math><msub><mrow><mrow><mo>(</mo><mi>P</mi><mi>S</mi><mo>)</mo></mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> condition for <span><math><mrow><mi>c</mi><mo><</mo><mn>0</mn></mrow></math></span> by employing the concentration compactness principle, the multiple normalized solutions are obtained by applying a critical point theorem. In addition, we consider the orbital stability of the ground state solution. Our results generalize some recent results in the literature.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"171 \",\"pages\":\"Article 109679\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002290\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002290","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Multiple normalized solutions for Schrödinger equation in RN with shrinking self-focusing core
In this paper, we study the multiple normalized solutions for the following Schrödinger equation where , . After establishing condition for by employing the concentration compactness principle, the multiple normalized solutions are obtained by applying a critical point theorem. In addition, we consider the orbital stability of the ground state solution. Our results generalize some recent results in the literature.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.