具有收缩自聚焦核的[公式略]Schrödinger方程的多重归一化解

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Wenjun Xing, Shoucai Wang, Chunyu Lei
{"title":"具有收缩自聚焦核的[公式略]Schrödinger方程的多重归一化解","authors":"Wenjun Xing,&nbsp;Shoucai Wang,&nbsp;Chunyu Lei","doi":"10.1016/j.aml.2025.109679","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the multiple normalized solutions for the following Schrödinger equation <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mi>in</mi><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>N</mi><mo>⩾</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>. After establishing <span><math><msub><mrow><mrow><mo>(</mo><mi>P</mi><mi>S</mi><mo>)</mo></mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> condition for <span><math><mrow><mi>c</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span> by employing the concentration compactness principle, the multiple normalized solutions are obtained by applying a critical point theorem. In addition, we consider the orbital stability of the ground state solution. Our results generalize some recent results in the literature.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109679"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple normalized solutions for Schrödinger equation in RN with shrinking self-focusing core\",\"authors\":\"Wenjun Xing,&nbsp;Shoucai Wang,&nbsp;Chunyu Lei\",\"doi\":\"10.1016/j.aml.2025.109679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the multiple normalized solutions for the following Schrödinger equation <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mi>in</mi><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>N</mi><mo>⩾</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>. After establishing <span><math><msub><mrow><mrow><mo>(</mo><mi>P</mi><mi>S</mi><mo>)</mo></mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> condition for <span><math><mrow><mi>c</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span> by employing the concentration compactness principle, the multiple normalized solutions are obtained by applying a critical point theorem. In addition, we consider the orbital stability of the ground state solution. Our results generalize some recent results in the literature.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"171 \",\"pages\":\"Article 109679\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002290\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002290","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究以下Schrödinger方程的多个归一化解- Δu+λu=Q(x)|u|p - 2u,inRN,∫RN|u|2dx=a2>0,其中N大于或等于3,p∈(2,2+4N)。利用浓度紧致原理建立c<;0的(PS)c条件,应用临界点定理得到多重归一化解。此外,我们还考虑了基态解的轨道稳定性。我们的结果概括了最近文献中的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple normalized solutions for Schrödinger equation in RN with shrinking self-focusing core
In this paper, we study the multiple normalized solutions for the following Schrödinger equation Δu+λu=Q(x)|u|p2u,inRN,RN|u|2dx=a2>0,where N3, p(2,2+4N). After establishing (PS)c condition for c<0 by employing the concentration compactness principle, the multiple normalized solutions are obtained by applying a critical point theorem. In addition, we consider the orbital stability of the ground state solution. Our results generalize some recent results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信