{"title":"带电荷旋转渐近ad的Cardy熵及广义chen - simons项的Lifshitz解","authors":"Moises Bravo-Gaete , Adolfo Cisterna , Mokhtar Hassaine , David Kubizňák","doi":"10.1016/j.physletb.2025.139721","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a three-dimensional gravity model that includes (non-linear) Maxwell and Chern-Simons-like terms, allowing for the existence of electrically charged rotating black hole solutions with a static electromagnetic potential. We verify that a Cardy-like formula, based not on central charges but on the mass of the uncharged and non-spinning soliton, obtained via a double Wick rotation of the neutral static black hole solution, accurately reproduces the Bekenstein-Hawking entropy. Furthermore, we show that a slight generalization of this model, incorporating a dilatonic field and extra gauge fields, admits charged and rotating black hole solutions with asymptotic Lifshitz behavior. The entropy of these solutions can likewise be derived using the Cardy-like formula, with the Lifshitz-type soliton serving as the ground state. Based on these results, we propose a generalized Cardy-like formula that successfully reproduces the semiclassical entropy in all the studied cases.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"868 ","pages":"Article 139721"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardy entropy of charged and rotating asymptotically AdS and Lifshitz solutions with a generalized Chern–Simons term\",\"authors\":\"Moises Bravo-Gaete , Adolfo Cisterna , Mokhtar Hassaine , David Kubizňák\",\"doi\":\"10.1016/j.physletb.2025.139721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a three-dimensional gravity model that includes (non-linear) Maxwell and Chern-Simons-like terms, allowing for the existence of electrically charged rotating black hole solutions with a static electromagnetic potential. We verify that a Cardy-like formula, based not on central charges but on the mass of the uncharged and non-spinning soliton, obtained via a double Wick rotation of the neutral static black hole solution, accurately reproduces the Bekenstein-Hawking entropy. Furthermore, we show that a slight generalization of this model, incorporating a dilatonic field and extra gauge fields, admits charged and rotating black hole solutions with asymptotic Lifshitz behavior. The entropy of these solutions can likewise be derived using the Cardy-like formula, with the Lifshitz-type soliton serving as the ground state. Based on these results, we propose a generalized Cardy-like formula that successfully reproduces the semiclassical entropy in all the studied cases.</div></div>\",\"PeriodicalId\":20162,\"journal\":{\"name\":\"Physics Letters B\",\"volume\":\"868 \",\"pages\":\"Article 139721\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269325004824\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325004824","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Cardy entropy of charged and rotating asymptotically AdS and Lifshitz solutions with a generalized Chern–Simons term
We consider a three-dimensional gravity model that includes (non-linear) Maxwell and Chern-Simons-like terms, allowing for the existence of electrically charged rotating black hole solutions with a static electromagnetic potential. We verify that a Cardy-like formula, based not on central charges but on the mass of the uncharged and non-spinning soliton, obtained via a double Wick rotation of the neutral static black hole solution, accurately reproduces the Bekenstein-Hawking entropy. Furthermore, we show that a slight generalization of this model, incorporating a dilatonic field and extra gauge fields, admits charged and rotating black hole solutions with asymptotic Lifshitz behavior. The entropy of these solutions can likewise be derived using the Cardy-like formula, with the Lifshitz-type soliton serving as the ground state. Based on these results, we propose a generalized Cardy-like formula that successfully reproduces the semiclassical entropy in all the studied cases.
期刊介绍:
Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.