非线性泛函微分-代数方程的稳定性及渐近稳定性分析

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Haodong Li, Hongliang Liu, Shoufu Li
{"title":"非线性泛函微分-代数方程的稳定性及渐近稳定性分析","authors":"Haodong Li,&nbsp;Hongliang Liu,&nbsp;Shoufu Li","doi":"10.1016/j.aml.2025.109682","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to studying stability and asymptotic stability theories of analytical solutions for nonlinear functional differential–algebraic equations, and the sufficiency conditions of these theories are given, which facilitates the study of the stability and asymptotic stability of their numerical methods.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109682"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and asymptotic stability analysis for nonlinear functional differential–algebraic equations\",\"authors\":\"Haodong Li,&nbsp;Hongliang Liu,&nbsp;Shoufu Li\",\"doi\":\"10.1016/j.aml.2025.109682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is devoted to studying stability and asymptotic stability theories of analytical solutions for nonlinear functional differential–algebraic equations, and the sufficiency conditions of these theories are given, which facilitates the study of the stability and asymptotic stability of their numerical methods.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"171 \",\"pages\":\"Article 109682\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002320\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002320","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非线性泛函微分-代数方程解析解的稳定性和渐近稳定性理论,给出了这些理论的充分性条件,为研究其数值方法的稳定性和渐近稳定性提供了便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and asymptotic stability analysis for nonlinear functional differential–algebraic equations
This paper is devoted to studying stability and asymptotic stability theories of analytical solutions for nonlinear functional differential–algebraic equations, and the sufficiency conditions of these theories are given, which facilitates the study of the stability and asymptotic stability of their numerical methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信