{"title":"比例SERS纳米探针通过准确检测内质网过氧化氢监测药物性肝损伤中的铁下垂","authors":"Hailan Jia, Fengxian Wang, Chi Wang, Dong Wang, Chunyuan Zhang, Xuerui Fu, Keying Zhao, Jia Zhang, Lijia Liang, Yanting Shen","doi":"10.1016/j.snb.2025.138306","DOIUrl":null,"url":null,"abstract":"Drug-induced liver injury (DILI) is a major liver dysfunction commonly caused by excessive or long-term administration of hepatotoxic drugs. The initiation and development of DILI have been closely related to ferroptosis. Revealing the internal relationship between ferroptosis and DILI is beneficial for the early diagnosis and therapy of DILI. Herein, a unique ratiometric surface-enhanced Raman scattering (SERS) nanoprobe was developed to explore the association between DILI and ferroptosis based on the variations of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in endoplasmic reticulum (ER). The SERS nanoprobe is composed of an ER-targeting peptide and an H<sub>2</sub>O<sub>2</sub>-responsive Raman reporter (3-mercaptophenylboronic acid), which shows a remarkable ratiometric SERS change (I<sub>1071/998</sub>) for H<sub>2</sub>O<sub>2</sub> with high selectivity and sensitivity. Using the nanoprobe, the dynamic alterations of H₂O₂ levels in ER within hepatocytes were successfully tracked throughout both the induction and inhibition of ferroptosis. Moreover, the complex interplay between ferroptosis and DILI in both cellular and murine models were elucidated. Complemented by Western blot analysis, the possible therapeutic effect of ferroptosis inhibition on DILI was confirmed by improving the Xc-/GSH/GPX4 antioxidant system. This study presents a novel approach for studying the relationship between ferroptosis and liver injury, thereby advancing DILI diagnosis and treatment.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"14 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ratiometric SERS nanoprobe for ferroptosis monitoring in drug-induced liver injury via accurate detection of hydrogen peroxide in endoplasmic reticulum\",\"authors\":\"Hailan Jia, Fengxian Wang, Chi Wang, Dong Wang, Chunyuan Zhang, Xuerui Fu, Keying Zhao, Jia Zhang, Lijia Liang, Yanting Shen\",\"doi\":\"10.1016/j.snb.2025.138306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drug-induced liver injury (DILI) is a major liver dysfunction commonly caused by excessive or long-term administration of hepatotoxic drugs. The initiation and development of DILI have been closely related to ferroptosis. Revealing the internal relationship between ferroptosis and DILI is beneficial for the early diagnosis and therapy of DILI. Herein, a unique ratiometric surface-enhanced Raman scattering (SERS) nanoprobe was developed to explore the association between DILI and ferroptosis based on the variations of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in endoplasmic reticulum (ER). The SERS nanoprobe is composed of an ER-targeting peptide and an H<sub>2</sub>O<sub>2</sub>-responsive Raman reporter (3-mercaptophenylboronic acid), which shows a remarkable ratiometric SERS change (I<sub>1071/998</sub>) for H<sub>2</sub>O<sub>2</sub> with high selectivity and sensitivity. Using the nanoprobe, the dynamic alterations of H₂O₂ levels in ER within hepatocytes were successfully tracked throughout both the induction and inhibition of ferroptosis. Moreover, the complex interplay between ferroptosis and DILI in both cellular and murine models were elucidated. Complemented by Western blot analysis, the possible therapeutic effect of ferroptosis inhibition on DILI was confirmed by improving the Xc-/GSH/GPX4 antioxidant system. This study presents a novel approach for studying the relationship between ferroptosis and liver injury, thereby advancing DILI diagnosis and treatment.\",\"PeriodicalId\":425,\"journal\":{\"name\":\"Sensors and Actuators B: Chemical\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators B: Chemical\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.snb.2025.138306\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2025.138306","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Ratiometric SERS nanoprobe for ferroptosis monitoring in drug-induced liver injury via accurate detection of hydrogen peroxide in endoplasmic reticulum
Drug-induced liver injury (DILI) is a major liver dysfunction commonly caused by excessive or long-term administration of hepatotoxic drugs. The initiation and development of DILI have been closely related to ferroptosis. Revealing the internal relationship between ferroptosis and DILI is beneficial for the early diagnosis and therapy of DILI. Herein, a unique ratiometric surface-enhanced Raman scattering (SERS) nanoprobe was developed to explore the association between DILI and ferroptosis based on the variations of hydrogen peroxide (H2O2) in endoplasmic reticulum (ER). The SERS nanoprobe is composed of an ER-targeting peptide and an H2O2-responsive Raman reporter (3-mercaptophenylboronic acid), which shows a remarkable ratiometric SERS change (I1071/998) for H2O2 with high selectivity and sensitivity. Using the nanoprobe, the dynamic alterations of H₂O₂ levels in ER within hepatocytes were successfully tracked throughout both the induction and inhibition of ferroptosis. Moreover, the complex interplay between ferroptosis and DILI in both cellular and murine models were elucidated. Complemented by Western blot analysis, the possible therapeutic effect of ferroptosis inhibition on DILI was confirmed by improving the Xc-/GSH/GPX4 antioxidant system. This study presents a novel approach for studying the relationship between ferroptosis and liver injury, thereby advancing DILI diagnosis and treatment.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.