迭代生长Kagome半金属Co3Sn2S2晶体中双极性诱导的巨大本征异常霍尔效应

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Senhao Lv, Hui Guo, Wei Jiang, Jiangang Yang, Lin Zhao, Minjun Wang, Hengxin Tan, Roger Guzman, Xianghua Kong, Ke Zhu, Zhen Zhao, Guoyu Xian, Li Huang, Hui Chen, Dongliang Zhao, Xiao Lin, Stephen J. Pennycook, Wu Zhou, Wei Ji, Binghai Yan, Jun He, Xingjiang Zhou, Haitao Yang, Feng Liu, Hong‐Jun Gao
{"title":"迭代生长Kagome半金属Co3Sn2S2晶体中双极性诱导的巨大本征异常霍尔效应","authors":"Senhao Lv, Hui Guo, Wei Jiang, Jiangang Yang, Lin Zhao, Minjun Wang, Hengxin Tan, Roger Guzman, Xianghua Kong, Ke Zhu, Zhen Zhao, Guoyu Xian, Li Huang, Hui Chen, Dongliang Zhao, Xiao Lin, Stephen J. Pennycook, Wu Zhou, Wei Ji, Binghai Yan, Jun He, Xingjiang Zhou, Haitao Yang, Feng Liu, Hong‐Jun Gao","doi":"10.1002/adfm.202510587","DOIUrl":null,"url":null,"abstract":"As a magnetic Weyl semimetal with broken time‐reversal symmetry, kagome‐lattice Co<jats:sub>3</jats:sub>Sn<jats:sub>2</jats:sub>S<jats:sub>2</jats:sub> hosts a plethora of exotic quantum phenomena due to the interplay between magnetism, electronic correlations, and non‐trivial band topology. However, achieving high crystal quality, which is crucial for understanding intrinsic mechanisms and enhancing the physical properties, still remains a significant challenge. Here, the synthesis of ultra‐high‐quality Co<jats:sub>3</jats:sub>Sn<jats:sub>2</jats:sub>S<jats:sub>2</jats:sub> single crystals is reported via an iterative chemical vapor transport (iterative‐CVT) approach, achieving gigantic anomalous Hall conductivity (AHC) of 1600 Ω<jats:sup>−1</jats:sup>cm<jats:sup>−1</jats:sup>, anomalous Hall angle (AHA) of 40%, and exceptional carrier mobility and magnetoresistance of 10 490 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> and 2500%. Intriguingly, a striking 65% enhancement of the AHC is observed upon increasing the temperature from 2 to 50 K, attributed to the presence of bipolar carrier contributions from the Weyl bands. Furthermore, an ultra‐narrow flat band near the Fermi level is directly visualized by angle‐resolved photoemission spectroscopy, suggesting enhanced electron correlations that render the electron concentration and hence AHC highly temperature‐dependent. The findings provide a robust material platform to inspire further research into emergent quantum phenomena in magnetic kagome systems.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"706 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipolarity Induced Gigantic Intrinsic Anomalous Hall Effect in Iterative‐Grown Kagome Semimetal Co3Sn2S2 Crystals\",\"authors\":\"Senhao Lv, Hui Guo, Wei Jiang, Jiangang Yang, Lin Zhao, Minjun Wang, Hengxin Tan, Roger Guzman, Xianghua Kong, Ke Zhu, Zhen Zhao, Guoyu Xian, Li Huang, Hui Chen, Dongliang Zhao, Xiao Lin, Stephen J. Pennycook, Wu Zhou, Wei Ji, Binghai Yan, Jun He, Xingjiang Zhou, Haitao Yang, Feng Liu, Hong‐Jun Gao\",\"doi\":\"10.1002/adfm.202510587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a magnetic Weyl semimetal with broken time‐reversal symmetry, kagome‐lattice Co<jats:sub>3</jats:sub>Sn<jats:sub>2</jats:sub>S<jats:sub>2</jats:sub> hosts a plethora of exotic quantum phenomena due to the interplay between magnetism, electronic correlations, and non‐trivial band topology. However, achieving high crystal quality, which is crucial for understanding intrinsic mechanisms and enhancing the physical properties, still remains a significant challenge. Here, the synthesis of ultra‐high‐quality Co<jats:sub>3</jats:sub>Sn<jats:sub>2</jats:sub>S<jats:sub>2</jats:sub> single crystals is reported via an iterative chemical vapor transport (iterative‐CVT) approach, achieving gigantic anomalous Hall conductivity (AHC) of 1600 Ω<jats:sup>−1</jats:sup>cm<jats:sup>−1</jats:sup>, anomalous Hall angle (AHA) of 40%, and exceptional carrier mobility and magnetoresistance of 10 490 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> and 2500%. Intriguingly, a striking 65% enhancement of the AHC is observed upon increasing the temperature from 2 to 50 K, attributed to the presence of bipolar carrier contributions from the Weyl bands. Furthermore, an ultra‐narrow flat band near the Fermi level is directly visualized by angle‐resolved photoemission spectroscopy, suggesting enhanced electron correlations that render the electron concentration and hence AHC highly temperature‐dependent. The findings provide a robust material platform to inspire further research into emergent quantum phenomena in magnetic kagome systems.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"706 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202510587\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202510587","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Co3Sn2S2作为一种具有破缺时间反转对称性的磁性Weyl半金属,由于磁性、电子相关性和非平凡带拓扑之间的相互作用,导致了大量的奇异量子现象。然而,实现高晶体质量对于理解内在机制和增强物理性质至关重要,仍然是一个重大挑战。本文通过迭代化学气相输运(迭代- CVT)方法合成了超高质量的Co3Sn2S2单晶,获得了巨大的异常霍尔电导率(AHC) 1600 Ω−1cm−1,异常霍尔角(AHA) 40%,以及10 490 cm2 V−1 s−1和2500%的特殊载流子迁移率和磁电阻。有趣的是,当温度从2 K增加到50 K时,观察到AHC显著增强了65%,这归因于Weyl带的双极载流子的存在。此外,在费米能级附近的超窄平带可以通过角分辨光发射光谱直接观察到,这表明电子相关性增强,使得电子浓度和AHC高度依赖于温度。这些发现为进一步研究磁kagome系统中的新兴量子现象提供了一个强大的材料平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bipolarity Induced Gigantic Intrinsic Anomalous Hall Effect in Iterative‐Grown Kagome Semimetal Co3Sn2S2 Crystals
As a magnetic Weyl semimetal with broken time‐reversal symmetry, kagome‐lattice Co3Sn2S2 hosts a plethora of exotic quantum phenomena due to the interplay between magnetism, electronic correlations, and non‐trivial band topology. However, achieving high crystal quality, which is crucial for understanding intrinsic mechanisms and enhancing the physical properties, still remains a significant challenge. Here, the synthesis of ultra‐high‐quality Co3Sn2S2 single crystals is reported via an iterative chemical vapor transport (iterative‐CVT) approach, achieving gigantic anomalous Hall conductivity (AHC) of 1600 Ω−1cm−1, anomalous Hall angle (AHA) of 40%, and exceptional carrier mobility and magnetoresistance of 10 490 cm2 V−1 s−1 and 2500%. Intriguingly, a striking 65% enhancement of the AHC is observed upon increasing the temperature from 2 to 50 K, attributed to the presence of bipolar carrier contributions from the Weyl bands. Furthermore, an ultra‐narrow flat band near the Fermi level is directly visualized by angle‐resolved photoemission spectroscopy, suggesting enhanced electron correlations that render the electron concentration and hence AHC highly temperature‐dependent. The findings provide a robust material platform to inspire further research into emergent quantum phenomena in magnetic kagome systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信