定制Li - Accelerated Motif可实现长周期锂电池的锂稳定和多硫化物转化

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fei Li, Haowei Yuan, Yifan Wang, Zhiyu Xue, Miao He, Jiacheng Wang, Fang Wu, Ming Huang, Yong Xiang, Anjun Hu, Wei Chen, Tongwei Wu, Xuping Sun
{"title":"定制Li - Accelerated Motif可实现长周期锂电池的锂稳定和多硫化物转化","authors":"Fei Li, Haowei Yuan, Yifan Wang, Zhiyu Xue, Miao He, Jiacheng Wang, Fang Wu, Ming Huang, Yong Xiang, Anjun Hu, Wei Chen, Tongwei Wu, Xuping Sun","doi":"10.1002/adfm.202511078","DOIUrl":null,"url":null,"abstract":"Lithium–sulfur (Li–S) batteries have long suffered from capacity degradation caused by polysulfide shuttle and lithium dendrite growth. Current research primarily focuses on developing catalysts to accelerate polysulfide conversion or designing solid electrolyte interphase (SEI) layers to suppress dendrite formation. However, simultaneous control of these dual challenges through a unified strategy remains unresolved. Herein, a novel catalyst design strategy endeavors to address these limitations. The catalyst‐coated separator integrates Li‐accelerated motifs into the Li anode, creating a localized microenvironment that enhances Li<jats:sup>+</jats:sup> migration kinetics to suppress dendrite growth at the anode side while boosting polysulfide conversion efficiency at the cathode side. In situ X‐ray diffraction, optical microscopy, and density functional theory (DFT) calculations reveal that the incorporation of Li‐accelerated motifs induces electron‐enriched interfacial states, enabling nearly barrier‐free Li<jats:sup>+</jats:sup> transport through accelerated ion migration. As a result, the battery achieves 82.8% capacity retention after 300 cycles at 1 C with an ultralow decay rate of 0.057% per cycle. Remarkably, Li||Li symmetric cells exhibit a record cycling stability exceeding 5000 h. This work presents an electron‐rich interface engineering strategy to simultaneously enhance polysulfide conversion kinetics and suppress dendrite proliferation, facilitating the development of practical high‐energy Li–S batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Li‐Accelerated Motif Enables Lithium Stabilization and Polysulfide Conversion for Long‐Cycling Li–S Batteries\",\"authors\":\"Fei Li, Haowei Yuan, Yifan Wang, Zhiyu Xue, Miao He, Jiacheng Wang, Fang Wu, Ming Huang, Yong Xiang, Anjun Hu, Wei Chen, Tongwei Wu, Xuping Sun\",\"doi\":\"10.1002/adfm.202511078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium–sulfur (Li–S) batteries have long suffered from capacity degradation caused by polysulfide shuttle and lithium dendrite growth. Current research primarily focuses on developing catalysts to accelerate polysulfide conversion or designing solid electrolyte interphase (SEI) layers to suppress dendrite formation. However, simultaneous control of these dual challenges through a unified strategy remains unresolved. Herein, a novel catalyst design strategy endeavors to address these limitations. The catalyst‐coated separator integrates Li‐accelerated motifs into the Li anode, creating a localized microenvironment that enhances Li<jats:sup>+</jats:sup> migration kinetics to suppress dendrite growth at the anode side while boosting polysulfide conversion efficiency at the cathode side. In situ X‐ray diffraction, optical microscopy, and density functional theory (DFT) calculations reveal that the incorporation of Li‐accelerated motifs induces electron‐enriched interfacial states, enabling nearly barrier‐free Li<jats:sup>+</jats:sup> transport through accelerated ion migration. As a result, the battery achieves 82.8% capacity retention after 300 cycles at 1 C with an ultralow decay rate of 0.057% per cycle. Remarkably, Li||Li symmetric cells exhibit a record cycling stability exceeding 5000 h. This work presents an electron‐rich interface engineering strategy to simultaneously enhance polysulfide conversion kinetics and suppress dendrite proliferation, facilitating the development of practical high‐energy Li–S batteries.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202511078\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511078","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,锂硫电池一直受到多硫化物穿梭和锂枝晶生长引起的容量下降的困扰。目前的研究主要集中在开发加速多硫化物转化的催化剂或设计固体电解质界面层来抑制枝晶的形成。然而,通过统一的战略同时控制这双重挑战仍然没有解决。在此,一种新的催化剂设计策略试图解决这些限制。催化剂涂层分离器将Li加速基序整合到Li阳极中,创造一个局部微环境,增强Li+迁移动力学,抑制阳极侧枝晶生长,同时提高阴极侧多硫化物转化效率。原位X射线衍射、光学显微镜和密度泛函理论(DFT)计算表明,Li -加速基元的结合诱导了富集电子的界面态,使Li+通过加速离子迁移几乎无屏障传输。结果,电池在1℃下循环300次后,容量保持率达到82.8%,每循环衰减率为0.057%。值得注意的是,Li||Li对称电池表现出超过5000小时的循环稳定性。这项工作提出了一种富电子界面工程策略,可以同时提高多硫化物转化动力学和抑制枝晶增殖,促进实用高能Li - s电池的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring Li‐Accelerated Motif Enables Lithium Stabilization and Polysulfide Conversion for Long‐Cycling Li–S Batteries
Lithium–sulfur (Li–S) batteries have long suffered from capacity degradation caused by polysulfide shuttle and lithium dendrite growth. Current research primarily focuses on developing catalysts to accelerate polysulfide conversion or designing solid electrolyte interphase (SEI) layers to suppress dendrite formation. However, simultaneous control of these dual challenges through a unified strategy remains unresolved. Herein, a novel catalyst design strategy endeavors to address these limitations. The catalyst‐coated separator integrates Li‐accelerated motifs into the Li anode, creating a localized microenvironment that enhances Li+ migration kinetics to suppress dendrite growth at the anode side while boosting polysulfide conversion efficiency at the cathode side. In situ X‐ray diffraction, optical microscopy, and density functional theory (DFT) calculations reveal that the incorporation of Li‐accelerated motifs induces electron‐enriched interfacial states, enabling nearly barrier‐free Li+ transport through accelerated ion migration. As a result, the battery achieves 82.8% capacity retention after 300 cycles at 1 C with an ultralow decay rate of 0.057% per cycle. Remarkably, Li||Li symmetric cells exhibit a record cycling stability exceeding 5000 h. This work presents an electron‐rich interface engineering strategy to simultaneously enhance polysulfide conversion kinetics and suppress dendrite proliferation, facilitating the development of practical high‐energy Li–S batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信