孔工程碳纳米笼提高超级电容器在极端温度下的电容性能

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jin Liu , Yekui Liu , Meiling Fan , Tianxiang Guo , Qin Zhou , Xin Peng , Haiping Yang , Yunfeng Guan , Yu Ding , Liya Ma
{"title":"孔工程碳纳米笼提高超级电容器在极端温度下的电容性能","authors":"Jin Liu ,&nbsp;Yekui Liu ,&nbsp;Meiling Fan ,&nbsp;Tianxiang Guo ,&nbsp;Qin Zhou ,&nbsp;Xin Peng ,&nbsp;Haiping Yang ,&nbsp;Yunfeng Guan ,&nbsp;Yu Ding ,&nbsp;Liya Ma","doi":"10.1016/j.jallcom.2025.182240","DOIUrl":null,"url":null,"abstract":"<div><div>Energy storage devices capable of stable operation across extreme temperatures are crucial for applications in harsh environments, whereas achieving consistent performance under such conditions remains a significant challenge<strong>.</strong> In this work<strong>,</strong> a wide-temperature-range supercapacitor was constructed using hierarchically porous spherical carbon nanocages (HPC) synthesized by soft template method. The synergistic integration of HPC electrodes with the 3-methoxypropionitrile (MPN) electrolyte enabled the symmetric supercapacitors to operate from −70–100 °C. At −70 °C, the specific capacitance of HPC electrode achieves 130 F g<sup>−1</sup>, approximately 200 % higher than that of commercial activated carbons. Furthermore, the system exhibits remarkable thermal stability, retaining 70 % of its initial capacitance after 10,000 cycles under a scan rate of 100 mV s<sup>−1</sup> at 100°C. Quantitative analysis confirms that the hollow structure with a large mesopore volume (1.8 cm<sup>3</sup> g<sup>−1</sup>) generated efficient ion transport channels at low temperatures. Meanwhile, the abundant micropores (S<sub>BET</sub> = 2959 m<sup>2</sup> g<sup>−1</sup>) provide substantial adsorption sites for the efficient charge storage.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1037 ","pages":"Article 182240"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pore engineered carbon nanocages enhancing capacitive performance for supercapacitors at extreme temperatures\",\"authors\":\"Jin Liu ,&nbsp;Yekui Liu ,&nbsp;Meiling Fan ,&nbsp;Tianxiang Guo ,&nbsp;Qin Zhou ,&nbsp;Xin Peng ,&nbsp;Haiping Yang ,&nbsp;Yunfeng Guan ,&nbsp;Yu Ding ,&nbsp;Liya Ma\",\"doi\":\"10.1016/j.jallcom.2025.182240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Energy storage devices capable of stable operation across extreme temperatures are crucial for applications in harsh environments, whereas achieving consistent performance under such conditions remains a significant challenge<strong>.</strong> In this work<strong>,</strong> a wide-temperature-range supercapacitor was constructed using hierarchically porous spherical carbon nanocages (HPC) synthesized by soft template method. The synergistic integration of HPC electrodes with the 3-methoxypropionitrile (MPN) electrolyte enabled the symmetric supercapacitors to operate from −70–100 °C. At −70 °C, the specific capacitance of HPC electrode achieves 130 F g<sup>−1</sup>, approximately 200 % higher than that of commercial activated carbons. Furthermore, the system exhibits remarkable thermal stability, retaining 70 % of its initial capacitance after 10,000 cycles under a scan rate of 100 mV s<sup>−1</sup> at 100°C. Quantitative analysis confirms that the hollow structure with a large mesopore volume (1.8 cm<sup>3</sup> g<sup>−1</sup>) generated efficient ion transport channels at low temperatures. Meanwhile, the abundant micropores (S<sub>BET</sub> = 2959 m<sup>2</sup> g<sup>−1</sup>) provide substantial adsorption sites for the efficient charge storage.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1037 \",\"pages\":\"Article 182240\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925838825038010\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825038010","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

能够在极端温度下稳定运行的储能设备对于恶劣环境中的应用至关重要,而在这种条件下实现一致的性能仍然是一个重大挑战。本文采用软模板法合成的分层多孔球形碳纳米笼(HPC)构建了宽温度范围的超级电容器。HPC电极与3-甲氧基丙腈(MPN)电解质的协同集成使对称超级电容器能够在-70至100°C范围内工作。在-70℃时,HPC电极的比电容达到130℉-1,比商用活性炭高出约200%。此外,该系统表现出显著的热稳定性,在100°C下,在100 mV s-1的扫描速率下,经过10,000次循环后,其初始电容仍保持70%。定量分析证实,具有大介孔体积(1.8 cm3 g-1)的中空结构在低温下产生了高效的离子传输通道。同时,丰富的微孔(SBET = 2959 m2 g-1)为高效电荷存储提供了大量的吸附位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pore engineered carbon nanocages enhancing capacitive performance for supercapacitors at extreme temperatures

Pore engineered carbon nanocages enhancing capacitive performance for supercapacitors at extreme temperatures
Energy storage devices capable of stable operation across extreme temperatures are crucial for applications in harsh environments, whereas achieving consistent performance under such conditions remains a significant challenge. In this work, a wide-temperature-range supercapacitor was constructed using hierarchically porous spherical carbon nanocages (HPC) synthesized by soft template method. The synergistic integration of HPC electrodes with the 3-methoxypropionitrile (MPN) electrolyte enabled the symmetric supercapacitors to operate from −70–100 °C. At −70 °C, the specific capacitance of HPC electrode achieves 130 F g−1, approximately 200 % higher than that of commercial activated carbons. Furthermore, the system exhibits remarkable thermal stability, retaining 70 % of its initial capacitance after 10,000 cycles under a scan rate of 100 mV s−1 at 100°C. Quantitative analysis confirms that the hollow structure with a large mesopore volume (1.8 cm3 g−1) generated efficient ion transport channels at low temperatures. Meanwhile, the abundant micropores (SBET = 2959 m2 g−1) provide substantial adsorption sites for the efficient charge storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信