基于多路激光诱导石墨烯免疫传感器的机器学习辅助肺癌多模态早期筛查。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-11 DOI:10.1021/acsnano.5c02822
Yongsheng Cai, Lihui Ke, Anxu Du, Jiancheng Dong, Zitong Gai, Lichun Gao*, Xiaoxiao Yang, Hao Han, Minghua Du, Guangliang Qiang, Li Wang*, Bo Wei*, Yubo Fan* and Yang Wang*, 
{"title":"基于多路激光诱导石墨烯免疫传感器的机器学习辅助肺癌多模态早期筛查。","authors":"Yongsheng Cai,&nbsp;Lihui Ke,&nbsp;Anxu Du,&nbsp;Jiancheng Dong,&nbsp;Zitong Gai,&nbsp;Lichun Gao*,&nbsp;Xiaoxiao Yang,&nbsp;Hao Han,&nbsp;Minghua Du,&nbsp;Guangliang Qiang,&nbsp;Li Wang*,&nbsp;Bo Wei*,&nbsp;Yubo Fan* and Yang Wang*,&nbsp;","doi":"10.1021/acsnano.5c02822","DOIUrl":null,"url":null,"abstract":"<p >Lung cancer remains the leading cause of cancer-related mortality worldwide, largely due to late-stage diagnosis. Early detection is critical for improving patient outcomes, yet current screening methods, such as low-dose computed tomography (CT), often lack the sensitivity and specificity required for early-stage detection. Here, we present a multimodal early screening platform that integrates a multiplexed laser-induced graphene (LIG) immunosensor with machine learning to enhance the accuracy of lung cancer diagnosis. Our platform enables the rapid, cost-effective, and simultaneous detection of four tumor markers─neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), p53, and SOX2─with limits of detection (LOD) as low as 1.62 pg/mL. By combining proteomic data from the immunosensor with deep learning-based CT imaging features and clinical data, we developed a multimodal predictive model that achieves an area under the curve (AUC) of 0.936, significantly outperforming single-modality approaches. This platform offers a transformative solution for early lung cancer screening, particularly in resource-limited settings, and provides potential technical support for precision medicine in oncology.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 28","pages":"25697–25709"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Assisted Multimodal Early Screening of Lung Cancer Based on a Multiplexed Laser-Induced Graphene Immunosensor\",\"authors\":\"Yongsheng Cai,&nbsp;Lihui Ke,&nbsp;Anxu Du,&nbsp;Jiancheng Dong,&nbsp;Zitong Gai,&nbsp;Lichun Gao*,&nbsp;Xiaoxiao Yang,&nbsp;Hao Han,&nbsp;Minghua Du,&nbsp;Guangliang Qiang,&nbsp;Li Wang*,&nbsp;Bo Wei*,&nbsp;Yubo Fan* and Yang Wang*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c02822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lung cancer remains the leading cause of cancer-related mortality worldwide, largely due to late-stage diagnosis. Early detection is critical for improving patient outcomes, yet current screening methods, such as low-dose computed tomography (CT), often lack the sensitivity and specificity required for early-stage detection. Here, we present a multimodal early screening platform that integrates a multiplexed laser-induced graphene (LIG) immunosensor with machine learning to enhance the accuracy of lung cancer diagnosis. Our platform enables the rapid, cost-effective, and simultaneous detection of four tumor markers─neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), p53, and SOX2─with limits of detection (LOD) as low as 1.62 pg/mL. By combining proteomic data from the immunosensor with deep learning-based CT imaging features and clinical data, we developed a multimodal predictive model that achieves an area under the curve (AUC) of 0.936, significantly outperforming single-modality approaches. This platform offers a transformative solution for early lung cancer screening, particularly in resource-limited settings, and provides potential technical support for precision medicine in oncology.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 28\",\"pages\":\"25697–25709\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c02822\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c02822","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

肺癌仍然是世界范围内癌症相关死亡的主要原因,主要是由于晚期诊断。早期检测对于改善患者预后至关重要,但目前的筛查方法,如低剂量计算机断层扫描(CT),往往缺乏早期检测所需的敏感性和特异性。在这里,我们提出了一个多模态早期筛查平台,该平台集成了多路激光诱导石墨烯(LIG)免疫传感器和机器学习,以提高肺癌诊断的准确性。我们的平台能够快速、经济、同时检测四种肿瘤标志物──神经元特异性烯醇化酶(NSE)、癌胚抗原(CEA)、p53和SOX2──检出限(LOD)低至1.62 pg/mL。通过将免疫传感器的蛋白质组学数据与基于深度学习的CT成像特征和临床数据相结合,我们开发了一个多模态预测模型,该模型的曲线下面积(AUC)为0.936,明显优于单模态方法。该平台为早期肺癌筛查提供了一种变革性解决方案,特别是在资源有限的环境中,并为肿瘤学精准医学提供了潜在的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning-Assisted Multimodal Early Screening of Lung Cancer Based on a Multiplexed Laser-Induced Graphene Immunosensor

Machine Learning-Assisted Multimodal Early Screening of Lung Cancer Based on a Multiplexed Laser-Induced Graphene Immunosensor

Lung cancer remains the leading cause of cancer-related mortality worldwide, largely due to late-stage diagnosis. Early detection is critical for improving patient outcomes, yet current screening methods, such as low-dose computed tomography (CT), often lack the sensitivity and specificity required for early-stage detection. Here, we present a multimodal early screening platform that integrates a multiplexed laser-induced graphene (LIG) immunosensor with machine learning to enhance the accuracy of lung cancer diagnosis. Our platform enables the rapid, cost-effective, and simultaneous detection of four tumor markers─neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), p53, and SOX2─with limits of detection (LOD) as low as 1.62 pg/mL. By combining proteomic data from the immunosensor with deep learning-based CT imaging features and clinical data, we developed a multimodal predictive model that achieves an area under the curve (AUC) of 0.936, significantly outperforming single-modality approaches. This platform offers a transformative solution for early lung cancer screening, particularly in resource-limited settings, and provides potential technical support for precision medicine in oncology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信