Joshua W. Sin, Siu Lun Chau, Ryan P. Burwood, Kurt Püntener, Raphael Bigler, Philippe Schwaller
{"title":"通过自动化和机器智能实现化学反应的高度并行优化","authors":"Joshua W. Sin, Siu Lun Chau, Ryan P. Burwood, Kurt Püntener, Raphael Bigler, Philippe Schwaller","doi":"10.1038/s41467-025-61803-0","DOIUrl":null,"url":null,"abstract":"<p>We report the development and application of a scalable machine learning (ML) framework (Minerva) for highly parallel multi-objective reaction optimisation with automated high-throughput experimentation (HTE). Minerva demonstrates robust performance with experimental data-derived benchmarks, efficiently handling large parallel batches, high-dimensional search spaces, reaction noise, and batch constraints present in real-world laboratories. Validating our approach experimentally, we apply Minerva in a 96-well HTE reaction optimisation campaign for a nickel-catalysed Suzuki reaction, tackling challenges in non-precious metal catalysis. Our approach effectively navigates the complex reaction landscape with unexpected chemical reactivity, outperforming traditional experimentalist-driven methods. Extending to industrial applications, we deploy Minerva in pharmaceutical process development, successfully optimising two active pharmaceutical ingredient (API) syntheses. For both a Ni-catalysed Suzuki coupling and a Pd-catalysed Buchwald-Hartwig reaction, our approach identifies multiple conditions achieving >95 area percent (AP) yield and selectivity, directly translating to improved process conditions at scale.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"23 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly parallel optimisation of chemical reactions through automation and machine intelligence\",\"authors\":\"Joshua W. Sin, Siu Lun Chau, Ryan P. Burwood, Kurt Püntener, Raphael Bigler, Philippe Schwaller\",\"doi\":\"10.1038/s41467-025-61803-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We report the development and application of a scalable machine learning (ML) framework (Minerva) for highly parallel multi-objective reaction optimisation with automated high-throughput experimentation (HTE). Minerva demonstrates robust performance with experimental data-derived benchmarks, efficiently handling large parallel batches, high-dimensional search spaces, reaction noise, and batch constraints present in real-world laboratories. Validating our approach experimentally, we apply Minerva in a 96-well HTE reaction optimisation campaign for a nickel-catalysed Suzuki reaction, tackling challenges in non-precious metal catalysis. Our approach effectively navigates the complex reaction landscape with unexpected chemical reactivity, outperforming traditional experimentalist-driven methods. Extending to industrial applications, we deploy Minerva in pharmaceutical process development, successfully optimising two active pharmaceutical ingredient (API) syntheses. For both a Ni-catalysed Suzuki coupling and a Pd-catalysed Buchwald-Hartwig reaction, our approach identifies multiple conditions achieving >95 area percent (AP) yield and selectivity, directly translating to improved process conditions at scale.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61803-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61803-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Highly parallel optimisation of chemical reactions through automation and machine intelligence
We report the development and application of a scalable machine learning (ML) framework (Minerva) for highly parallel multi-objective reaction optimisation with automated high-throughput experimentation (HTE). Minerva demonstrates robust performance with experimental data-derived benchmarks, efficiently handling large parallel batches, high-dimensional search spaces, reaction noise, and batch constraints present in real-world laboratories. Validating our approach experimentally, we apply Minerva in a 96-well HTE reaction optimisation campaign for a nickel-catalysed Suzuki reaction, tackling challenges in non-precious metal catalysis. Our approach effectively navigates the complex reaction landscape with unexpected chemical reactivity, outperforming traditional experimentalist-driven methods. Extending to industrial applications, we deploy Minerva in pharmaceutical process development, successfully optimising two active pharmaceutical ingredient (API) syntheses. For both a Ni-catalysed Suzuki coupling and a Pd-catalysed Buchwald-Hartwig reaction, our approach identifies multiple conditions achieving >95 area percent (AP) yield and selectivity, directly translating to improved process conditions at scale.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.