通过自动化和机器智能实现化学反应的高度并行优化

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Joshua W. Sin, Siu Lun Chau, Ryan P. Burwood, Kurt Püntener, Raphael Bigler, Philippe Schwaller
{"title":"通过自动化和机器智能实现化学反应的高度并行优化","authors":"Joshua W. Sin, Siu Lun Chau, Ryan P. Burwood, Kurt Püntener, Raphael Bigler, Philippe Schwaller","doi":"10.1038/s41467-025-61803-0","DOIUrl":null,"url":null,"abstract":"<p>We report the development and application of a scalable machine learning (ML) framework (Minerva) for highly parallel multi-objective reaction optimisation with automated high-throughput experimentation (HTE). Minerva demonstrates robust performance with experimental data-derived benchmarks, efficiently handling large parallel batches, high-dimensional search spaces, reaction noise, and batch constraints present in real-world laboratories. Validating our approach experimentally, we apply Minerva in a 96-well HTE reaction optimisation campaign for a nickel-catalysed Suzuki reaction, tackling challenges in non-precious metal catalysis. Our approach effectively navigates the complex reaction landscape with unexpected chemical reactivity, outperforming traditional experimentalist-driven methods. Extending to industrial applications, we deploy Minerva in pharmaceutical process development, successfully optimising two active pharmaceutical ingredient (API) syntheses. For both a Ni-catalysed Suzuki coupling and a Pd-catalysed Buchwald-Hartwig reaction, our approach identifies multiple conditions achieving &gt;95 area percent (AP) yield and selectivity, directly translating to improved process conditions at scale.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"23 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly parallel optimisation of chemical reactions through automation and machine intelligence\",\"authors\":\"Joshua W. Sin, Siu Lun Chau, Ryan P. Burwood, Kurt Püntener, Raphael Bigler, Philippe Schwaller\",\"doi\":\"10.1038/s41467-025-61803-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We report the development and application of a scalable machine learning (ML) framework (Minerva) for highly parallel multi-objective reaction optimisation with automated high-throughput experimentation (HTE). Minerva demonstrates robust performance with experimental data-derived benchmarks, efficiently handling large parallel batches, high-dimensional search spaces, reaction noise, and batch constraints present in real-world laboratories. Validating our approach experimentally, we apply Minerva in a 96-well HTE reaction optimisation campaign for a nickel-catalysed Suzuki reaction, tackling challenges in non-precious metal catalysis. Our approach effectively navigates the complex reaction landscape with unexpected chemical reactivity, outperforming traditional experimentalist-driven methods. Extending to industrial applications, we deploy Minerva in pharmaceutical process development, successfully optimising two active pharmaceutical ingredient (API) syntheses. For both a Ni-catalysed Suzuki coupling and a Pd-catalysed Buchwald-Hartwig reaction, our approach identifies multiple conditions achieving &gt;95 area percent (AP) yield and selectivity, directly translating to improved process conditions at scale.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61803-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61803-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了一个可扩展的机器学习(ML)框架(Minerva)的开发和应用,用于高度并行的多目标反应优化和自动化高通量实验(HTE)。Minerva通过实验数据衍生的基准测试证明了强大的性能,可以有效地处理现实世界实验室中存在的大型并行批次、高维搜索空间、反应噪声和批次约束。通过实验验证了我们的方法,我们将Minerva应用于96井的镍催化铃木反应的HTE反应优化活动,解决了非贵金属催化的挑战。我们的方法通过意想不到的化学反应性有效地导航复杂的反应景观,优于传统的实验驱动方法。扩展到工业应用,我们在制药工艺开发中部署Minerva,成功优化了两种活性药物成分(API)的合成。对于镍催化的铃木偶联和钯催化的Buchwald-Hartwig反应,我们的方法确定了多种条件,达到95%的产率和选择性,直接转化为大规模改进的工艺条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly parallel optimisation of chemical reactions through automation and machine intelligence

Highly parallel optimisation of chemical reactions through automation and machine intelligence

We report the development and application of a scalable machine learning (ML) framework (Minerva) for highly parallel multi-objective reaction optimisation with automated high-throughput experimentation (HTE). Minerva demonstrates robust performance with experimental data-derived benchmarks, efficiently handling large parallel batches, high-dimensional search spaces, reaction noise, and batch constraints present in real-world laboratories. Validating our approach experimentally, we apply Minerva in a 96-well HTE reaction optimisation campaign for a nickel-catalysed Suzuki reaction, tackling challenges in non-precious metal catalysis. Our approach effectively navigates the complex reaction landscape with unexpected chemical reactivity, outperforming traditional experimentalist-driven methods. Extending to industrial applications, we deploy Minerva in pharmaceutical process development, successfully optimising two active pharmaceutical ingredient (API) syntheses. For both a Ni-catalysed Suzuki coupling and a Pd-catalysed Buchwald-Hartwig reaction, our approach identifies multiple conditions achieving >95 area percent (AP) yield and selectivity, directly translating to improved process conditions at scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信