Salvatore Falciglia, Laura Caffi, Claudio Baiata, Chiara Palmisano, Ioannis Ugo Isaias, Alberto Mazzoni
{"title":"基于变压器的帕金森病丘脑下β活动的长期预测因子","authors":"Salvatore Falciglia, Laura Caffi, Claudio Baiata, Chiara Palmisano, Ioannis Ugo Isaias, Alberto Mazzoni","doi":"10.1038/s41531-025-01011-1","DOIUrl":null,"url":null,"abstract":"<p>Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a mainstay treatment for patients with Parkinson’s disease (PD). The adaptive DBS approach (aDBS) modulates stimulation, based on the power in the beta range ([12–30] Hz) of STN local field potentials, aiming to follow the patient’s clinical state. Control of aDBS relies on identifying the correct thresholds of pathological beta power. Currently, in-person reprogramming sessions, due to changes in beta power distribution over time, are needed to ensure clinical efficacy. Here we present LAURA, a Transformer-based framework predicting the nonlinear evolution of subthalamic beta power up to 6 days in advance, based on the analysis of chronic recordings. High prediction accuracy (>90%) was achieved in four PD patients with chronic DBS over months of recordings, independently of stimulation parameters. Our study paves the way for remote monitoring strategies and the implementation of new algorithms for personalized auto-tuning aDBS devices.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"109 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer-based long-term predictor of subthalamic beta activity in Parkinson’s disease\",\"authors\":\"Salvatore Falciglia, Laura Caffi, Claudio Baiata, Chiara Palmisano, Ioannis Ugo Isaias, Alberto Mazzoni\",\"doi\":\"10.1038/s41531-025-01011-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a mainstay treatment for patients with Parkinson’s disease (PD). The adaptive DBS approach (aDBS) modulates stimulation, based on the power in the beta range ([12–30] Hz) of STN local field potentials, aiming to follow the patient’s clinical state. Control of aDBS relies on identifying the correct thresholds of pathological beta power. Currently, in-person reprogramming sessions, due to changes in beta power distribution over time, are needed to ensure clinical efficacy. Here we present LAURA, a Transformer-based framework predicting the nonlinear evolution of subthalamic beta power up to 6 days in advance, based on the analysis of chronic recordings. High prediction accuracy (>90%) was achieved in four PD patients with chronic DBS over months of recordings, independently of stimulation parameters. Our study paves the way for remote monitoring strategies and the implementation of new algorithms for personalized auto-tuning aDBS devices.</p>\",\"PeriodicalId\":19706,\"journal\":{\"name\":\"NPJ Parkinson's Disease\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Parkinson's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41531-025-01011-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-01011-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Transformer-based long-term predictor of subthalamic beta activity in Parkinson’s disease
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a mainstay treatment for patients with Parkinson’s disease (PD). The adaptive DBS approach (aDBS) modulates stimulation, based on the power in the beta range ([12–30] Hz) of STN local field potentials, aiming to follow the patient’s clinical state. Control of aDBS relies on identifying the correct thresholds of pathological beta power. Currently, in-person reprogramming sessions, due to changes in beta power distribution over time, are needed to ensure clinical efficacy. Here we present LAURA, a Transformer-based framework predicting the nonlinear evolution of subthalamic beta power up to 6 days in advance, based on the analysis of chronic recordings. High prediction accuracy (>90%) was achieved in four PD patients with chronic DBS over months of recordings, independently of stimulation parameters. Our study paves the way for remote monitoring strategies and the implementation of new algorithms for personalized auto-tuning aDBS devices.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.