连续介质中准束缚态实现双波段电磁诱导透明

IF 10 1区 物理与天体物理 Q1 OPTICS
Shaojun You, Longxiao Wang, Haoxuan He, Chaobiao Zhou, Lujun Huang
{"title":"连续介质中准束缚态实现双波段电磁诱导透明","authors":"Shaojun You, Longxiao Wang, Haoxuan He, Chaobiao Zhou, Lujun Huang","doi":"10.1002/lpor.202500677","DOIUrl":null,"url":null,"abstract":"Metasurfaces emerge as exceptional platforms for achieving classical‐analog electromagnetically induced transparency (EIT). In this study, dual‐band EIT is demonstrated by strategically engineering the coupling between a magnetic toroidal dipole (TD) Mie resonance and two quasi‐bound states in the continuum (QBICs) within all‐dielectric metasurfaces. Through deliberate symmetry breaking in the cuboid unit cell—achieved via off‐center holes or U‐shaped configurations—two BICs, predominantly governed by electric TD and magnetic quadrupole modes, are successfully transformed into QBICs with high quality (Q) factors. These QBICs are then coupled to a low‐Q magnetic TD Mie resonance, resulting in the emergence of dual‐band EIT. The corresponding group delays reach up to 9.51 ps (Q = 7,674) and 5.69 ps (Q = 3,631), respectively, and diverge when the Q‐factors approach infinite. Furthermore, the dual‐band EIT with high Q‐factors is experimentally validated by fabricating a series of silicon metasurfaces and characterizing their transmission spectra. Excellent agreement is found between numerical simulation and experimental measurement. Measurement results reveal that both the resonance wavelengths and Q‐factors of the dual‐band EIT are precisely tuned by adjusting the asymmetry parameters. These findings hold significant promise for applications in multi‐wavelength slow light devices and biosensing.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"109 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual‐Band Electromagnetically Induced Transparency Enabled by Quasi‐Bound States in the Continuum\",\"authors\":\"Shaojun You, Longxiao Wang, Haoxuan He, Chaobiao Zhou, Lujun Huang\",\"doi\":\"10.1002/lpor.202500677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metasurfaces emerge as exceptional platforms for achieving classical‐analog electromagnetically induced transparency (EIT). In this study, dual‐band EIT is demonstrated by strategically engineering the coupling between a magnetic toroidal dipole (TD) Mie resonance and two quasi‐bound states in the continuum (QBICs) within all‐dielectric metasurfaces. Through deliberate symmetry breaking in the cuboid unit cell—achieved via off‐center holes or U‐shaped configurations—two BICs, predominantly governed by electric TD and magnetic quadrupole modes, are successfully transformed into QBICs with high quality (Q) factors. These QBICs are then coupled to a low‐Q magnetic TD Mie resonance, resulting in the emergence of dual‐band EIT. The corresponding group delays reach up to 9.51 ps (Q = 7,674) and 5.69 ps (Q = 3,631), respectively, and diverge when the Q‐factors approach infinite. Furthermore, the dual‐band EIT with high Q‐factors is experimentally validated by fabricating a series of silicon metasurfaces and characterizing their transmission spectra. Excellent agreement is found between numerical simulation and experimental measurement. Measurement results reveal that both the resonance wavelengths and Q‐factors of the dual‐band EIT are precisely tuned by adjusting the asymmetry parameters. These findings hold significant promise for applications in multi‐wavelength slow light devices and biosensing.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202500677\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500677","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

超表面是实现经典模拟电磁感应透明(EIT)的特殊平台。在这项研究中,双波段EIT通过策略性地设计磁环偶极子(TD) Mie共振与全介电元表面连续介质(qbic)中的两个准束缚态之间的耦合来证明。通过偏离中心孔或U形结构实现长方体单元胞的对称破缺,两个主要由电TD和磁四极模式控制的bic成功转化为具有高质量(Q)因子的qbic。然后将这些qbic耦合到低Q磁性TD米氏共振,从而产生双波段EIT。相应的群延迟分别达到9.51 ps (Q = 7674)和5.69 ps (Q = 3631),并在Q因子趋于无穷时发散。此外,通过制作一系列硅超表面并对其透射光谱进行表征,实验验证了具有高Q因子的双波段EIT。数值模拟结果与实验结果吻合良好。测量结果表明,双波段EIT的共振波长和Q因子都可以通过调整不对称参数来精确调谐。这些发现对多波长慢光器件和生物传感具有重要的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual‐Band Electromagnetically Induced Transparency Enabled by Quasi‐Bound States in the Continuum
Metasurfaces emerge as exceptional platforms for achieving classical‐analog electromagnetically induced transparency (EIT). In this study, dual‐band EIT is demonstrated by strategically engineering the coupling between a magnetic toroidal dipole (TD) Mie resonance and two quasi‐bound states in the continuum (QBICs) within all‐dielectric metasurfaces. Through deliberate symmetry breaking in the cuboid unit cell—achieved via off‐center holes or U‐shaped configurations—two BICs, predominantly governed by electric TD and magnetic quadrupole modes, are successfully transformed into QBICs with high quality (Q) factors. These QBICs are then coupled to a low‐Q magnetic TD Mie resonance, resulting in the emergence of dual‐band EIT. The corresponding group delays reach up to 9.51 ps (Q = 7,674) and 5.69 ps (Q = 3,631), respectively, and diverge when the Q‐factors approach infinite. Furthermore, the dual‐band EIT with high Q‐factors is experimentally validated by fabricating a series of silicon metasurfaces and characterizing their transmission spectra. Excellent agreement is found between numerical simulation and experimental measurement. Measurement results reveal that both the resonance wavelengths and Q‐factors of the dual‐band EIT are precisely tuned by adjusting the asymmetry parameters. These findings hold significant promise for applications in multi‐wavelength slow light devices and biosensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信