Shuo Feng, Xiaoli Wu, Eun-Young K. Choi, Tse-Shao Chang, Ruoliu Zhang, Sangeeta Jaiswal, Yuting Duan, Hui Jiang, Thomas D. Wang
{"title":"一种用于增强肝细胞癌成像和多价检测的新型多肽多聚体","authors":"Shuo Feng, Xiaoli Wu, Eun-Young K. Choi, Tse-Shao Chang, Ruoliu Zhang, Sangeeta Jaiswal, Yuting Duan, Hui Jiang, Thomas D. Wang","doi":"10.1016/j.snb.2025.138310","DOIUrl":null,"url":null,"abstract":"The global incidence of hepatocellular carcinoma (HCC) is rising steadily, yet early detection methods remain a major clinical challenge due to genetic heterogeneity and variable target expression in these tumors. Conventional imaging approaches rely on non-specific or single targets, and often fail to achieve sufficient sensitivity or specificity, in particular, for early stage disease. A peptide multimer capable of simultaneously targeting 3 early HCC targets, including GPC3, CD44, and EpCAM, using a single biochemical construct was demonstrated. The multimer was labeled with either Cy5.5 for fluorescence imaging or Gd-DOTA for MRI to enable dual-modality detection. In vitro analysis using patient-derived HCC cell lines and organoids, and demonstrated significantly enhanced binding kinetics and affinity, including a 2.6-fold increase in fluorescence intensity and a 2.18-fold faster association rate compared with individual monomers. In vivo MRI in orthotopic patient-derived xenograft (PDX) models, both with and without cirrhosis, showed a peak tumor-to-background ratio of 3.05 at 0.5<!-- --> <!-- -->hours post-injection and rapid renal clearance by about 4<!-- --> <!-- -->hours. Ex vivo immunofluorescence of human liver specimens yielded 87% sensitivity and 80% specificity for distinguishing HCC from cirrhosis. These findings highlight multimer potential as a clinically translatable platform to improve early HCC diagnosis via enhanced molecular imaging.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"694 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Peptide Multimer for Enhanced Imaging and Multivalent Detection of Hepatocellular Carcinoma\",\"authors\":\"Shuo Feng, Xiaoli Wu, Eun-Young K. Choi, Tse-Shao Chang, Ruoliu Zhang, Sangeeta Jaiswal, Yuting Duan, Hui Jiang, Thomas D. Wang\",\"doi\":\"10.1016/j.snb.2025.138310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global incidence of hepatocellular carcinoma (HCC) is rising steadily, yet early detection methods remain a major clinical challenge due to genetic heterogeneity and variable target expression in these tumors. Conventional imaging approaches rely on non-specific or single targets, and often fail to achieve sufficient sensitivity or specificity, in particular, for early stage disease. A peptide multimer capable of simultaneously targeting 3 early HCC targets, including GPC3, CD44, and EpCAM, using a single biochemical construct was demonstrated. The multimer was labeled with either Cy5.5 for fluorescence imaging or Gd-DOTA for MRI to enable dual-modality detection. In vitro analysis using patient-derived HCC cell lines and organoids, and demonstrated significantly enhanced binding kinetics and affinity, including a 2.6-fold increase in fluorescence intensity and a 2.18-fold faster association rate compared with individual monomers. In vivo MRI in orthotopic patient-derived xenograft (PDX) models, both with and without cirrhosis, showed a peak tumor-to-background ratio of 3.05 at 0.5<!-- --> <!-- -->hours post-injection and rapid renal clearance by about 4<!-- --> <!-- -->hours. Ex vivo immunofluorescence of human liver specimens yielded 87% sensitivity and 80% specificity for distinguishing HCC from cirrhosis. These findings highlight multimer potential as a clinically translatable platform to improve early HCC diagnosis via enhanced molecular imaging.\",\"PeriodicalId\":425,\"journal\":{\"name\":\"Sensors and Actuators B: Chemical\",\"volume\":\"694 1\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators B: Chemical\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.snb.2025.138310\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2025.138310","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Novel Peptide Multimer for Enhanced Imaging and Multivalent Detection of Hepatocellular Carcinoma
The global incidence of hepatocellular carcinoma (HCC) is rising steadily, yet early detection methods remain a major clinical challenge due to genetic heterogeneity and variable target expression in these tumors. Conventional imaging approaches rely on non-specific or single targets, and often fail to achieve sufficient sensitivity or specificity, in particular, for early stage disease. A peptide multimer capable of simultaneously targeting 3 early HCC targets, including GPC3, CD44, and EpCAM, using a single biochemical construct was demonstrated. The multimer was labeled with either Cy5.5 for fluorescence imaging or Gd-DOTA for MRI to enable dual-modality detection. In vitro analysis using patient-derived HCC cell lines and organoids, and demonstrated significantly enhanced binding kinetics and affinity, including a 2.6-fold increase in fluorescence intensity and a 2.18-fold faster association rate compared with individual monomers. In vivo MRI in orthotopic patient-derived xenograft (PDX) models, both with and without cirrhosis, showed a peak tumor-to-background ratio of 3.05 at 0.5 hours post-injection and rapid renal clearance by about 4 hours. Ex vivo immunofluorescence of human liver specimens yielded 87% sensitivity and 80% specificity for distinguishing HCC from cirrhosis. These findings highlight multimer potential as a clinically translatable platform to improve early HCC diagnosis via enhanced molecular imaging.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.