等离子体工程AlN外延MoS2的破谷简并

IF 10 1区 物理与天体物理 Q1 OPTICS
Yuxiang Zhang, Weiqing Tang, Haiyang Liu, Mengyu Liu, Anqi Cheng, Shiming Wu, Ying Ye, Min Liu, Zongnan Zhang, Chunmiao Zhang, Yaping Wu, Xu Li, Zhiming Wu, Junyong Kang
{"title":"等离子体工程AlN外延MoS2的破谷简并","authors":"Yuxiang Zhang, Weiqing Tang, Haiyang Liu, Mengyu Liu, Anqi Cheng, Shiming Wu, Ying Ye, Min Liu, Zongnan Zhang, Chunmiao Zhang, Yaping Wu, Xu Li, Zhiming Wu, Junyong Kang","doi":"10.1002/lpor.202500823","DOIUrl":null,"url":null,"abstract":"Two‐dimensional transition metal dichalcogenides represent a highly attractive platform for the development of valleytronic devices due to their unique spin‐valley properties. Herein, a plasma‐assisted interfacial engineering is proposed to enhance valley polarization and valley splitting in MoS<jats:sub>2</jats:sub>/AlN heterostructure by modifying the surface configurations of AlN substrates. The experimental results show that after the optimized N<jats:sub>2</jats:sub>‐plasma treatment, the AlN surface becomes smoother with a decreased migration barrier, thereby facilitating the growth of high‐quality MoS<jats:sub>2</jats:sub>. The valley splitting and degree of valley polarization in the optimal sample reach 7.96 meV (the corresponding Landé g factor is 19.6) and 33.8% at −7 T, which are 16.0‐ and 1.0‐fold higher than those in the untreated MoS<jats:sub>2</jats:sub>/AlN heterostructure, respectively. Theoretical simulations indicate that the enhanced spin‐valley properties are predominantly ascribed to the AlN surface magnetism induced by the hybridization of <jats:italic>P<jats:sub>z</jats:sub></jats:italic> and <jats:italic>P<jats:sub>y</jats:sub></jats:italic> orbitals of surface N and O atoms. This work opens a new avenue for manipulating spin‐valley properties in 2D materials via interfacial engineering.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"1 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broken Valley Degeneracy in Epitaxial MoS2 on Plasma‐Engineered AlN\",\"authors\":\"Yuxiang Zhang, Weiqing Tang, Haiyang Liu, Mengyu Liu, Anqi Cheng, Shiming Wu, Ying Ye, Min Liu, Zongnan Zhang, Chunmiao Zhang, Yaping Wu, Xu Li, Zhiming Wu, Junyong Kang\",\"doi\":\"10.1002/lpor.202500823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two‐dimensional transition metal dichalcogenides represent a highly attractive platform for the development of valleytronic devices due to their unique spin‐valley properties. Herein, a plasma‐assisted interfacial engineering is proposed to enhance valley polarization and valley splitting in MoS<jats:sub>2</jats:sub>/AlN heterostructure by modifying the surface configurations of AlN substrates. The experimental results show that after the optimized N<jats:sub>2</jats:sub>‐plasma treatment, the AlN surface becomes smoother with a decreased migration barrier, thereby facilitating the growth of high‐quality MoS<jats:sub>2</jats:sub>. The valley splitting and degree of valley polarization in the optimal sample reach 7.96 meV (the corresponding Landé g factor is 19.6) and 33.8% at −7 T, which are 16.0‐ and 1.0‐fold higher than those in the untreated MoS<jats:sub>2</jats:sub>/AlN heterostructure, respectively. Theoretical simulations indicate that the enhanced spin‐valley properties are predominantly ascribed to the AlN surface magnetism induced by the hybridization of <jats:italic>P<jats:sub>z</jats:sub></jats:italic> and <jats:italic>P<jats:sub>y</jats:sub></jats:italic> orbitals of surface N and O atoms. This work opens a new avenue for manipulating spin‐valley properties in 2D materials via interfacial engineering.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202500823\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500823","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

二维过渡金属二硫族化合物由于其独特的自旋谷特性,为谷电子器件的发展提供了一个极具吸引力的平台。本文提出了一种等离子体辅助界面工程,通过改变AlN衬底的表面构型来增强MoS2/AlN异质结构中的谷极化和谷分裂。实验结果表明,经过优化的N2等离子体处理后,AlN表面变得更加光滑,迁移屏障降低,从而有利于高质量MoS2的生长。在- 7 T下,最优样品的谷分裂和谷极化度分别达到7.96 meV(相应的land因子为19.6)和33.8%,分别比未处理的MoS2/AlN异质结构高16.0倍和1.0倍。理论模拟表明,自旋谷特性的增强主要归因于表面N和O原子的Pz和Py轨道杂化引起的AlN表面磁性。这项工作为通过界面工程操纵二维材料的自旋谷特性开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Broken Valley Degeneracy in Epitaxial MoS2 on Plasma‐Engineered AlN
Two‐dimensional transition metal dichalcogenides represent a highly attractive platform for the development of valleytronic devices due to their unique spin‐valley properties. Herein, a plasma‐assisted interfacial engineering is proposed to enhance valley polarization and valley splitting in MoS2/AlN heterostructure by modifying the surface configurations of AlN substrates. The experimental results show that after the optimized N2‐plasma treatment, the AlN surface becomes smoother with a decreased migration barrier, thereby facilitating the growth of high‐quality MoS2. The valley splitting and degree of valley polarization in the optimal sample reach 7.96 meV (the corresponding Landé g factor is 19.6) and 33.8% at −7 T, which are 16.0‐ and 1.0‐fold higher than those in the untreated MoS2/AlN heterostructure, respectively. Theoretical simulations indicate that the enhanced spin‐valley properties are predominantly ascribed to the AlN surface magnetism induced by the hybridization of Pz and Py orbitals of surface N and O atoms. This work opens a new avenue for manipulating spin‐valley properties in 2D materials via interfacial engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信