硼罗芬纳米带系统中基质介导的相互作用:对锂存储应用的影响

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Junyu Fan , Jingyi Xiao , Haibo Wang , Xiaoqing Liang , Xiaojie Li , Xiaowei Yang , Nan Gao
{"title":"硼罗芬纳米带系统中基质介导的相互作用:对锂存储应用的影响","authors":"Junyu Fan ,&nbsp;Jingyi Xiao ,&nbsp;Haibo Wang ,&nbsp;Xiaoqing Liang ,&nbsp;Xiaojie Li ,&nbsp;Xiaowei Yang ,&nbsp;Nan Gao","doi":"10.1016/j.apsusc.2025.164052","DOIUrl":null,"url":null,"abstract":"<div><div>Borophene nanoribbons (BNRs), one-dimensional nanostructures recently synthesized through advanced fabrication techniques, demonstrate significantly enhanced quantum confinement effects relative to their two-dimensional analogues. Through systematic first-principles calculations, we comprehensively investigate the interfacial interactions between BNRs and five distinct metal substrates: Ag(1 1 1), Au(1 1 1), Cu(1 1 1), Al(1 1 1), and Ir(1 1 1). Multiple characterization metrics, including binding energies, electronic band structures, local density of states, electron localization function, and electrostatic potential analysis, are employed to elucidate the fundamental interfacial properties of BNRs/metal hybrid systems. Our computational results reveal that Au and Cu substrates favor the epitaxial growth of BNRs and maintain lower interfacial tunneling barriers. Simulated scanning tunneling microscopy images for these BNRs provide direct experimental validation criteria. Furthermore, in lithium-ion battery applications, these BNR-based systems demonstrate strong lithium adsorption capabilities with binding energies ranging from −0.97 to −1.32 eV and exhibit low diffusion energy barriers across multiple pathways, with respective value of 0.36 eV and 0.41 eV for Au-supported and Ir-supported systems. This study not only provides critical theoretical guidance for the controlled synthesis of BNRs but also highlights their promising potential as advanced electrode materials for rechargeable energy storage systems.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"711 ","pages":"Article 164052"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substrate-mediated interactions in borophene nanoribbon systems: implications for lithium storage applications\",\"authors\":\"Junyu Fan ,&nbsp;Jingyi Xiao ,&nbsp;Haibo Wang ,&nbsp;Xiaoqing Liang ,&nbsp;Xiaojie Li ,&nbsp;Xiaowei Yang ,&nbsp;Nan Gao\",\"doi\":\"10.1016/j.apsusc.2025.164052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Borophene nanoribbons (BNRs), one-dimensional nanostructures recently synthesized through advanced fabrication techniques, demonstrate significantly enhanced quantum confinement effects relative to their two-dimensional analogues. Through systematic first-principles calculations, we comprehensively investigate the interfacial interactions between BNRs and five distinct metal substrates: Ag(1 1 1), Au(1 1 1), Cu(1 1 1), Al(1 1 1), and Ir(1 1 1). Multiple characterization metrics, including binding energies, electronic band structures, local density of states, electron localization function, and electrostatic potential analysis, are employed to elucidate the fundamental interfacial properties of BNRs/metal hybrid systems. Our computational results reveal that Au and Cu substrates favor the epitaxial growth of BNRs and maintain lower interfacial tunneling barriers. Simulated scanning tunneling microscopy images for these BNRs provide direct experimental validation criteria. Furthermore, in lithium-ion battery applications, these BNR-based systems demonstrate strong lithium adsorption capabilities with binding energies ranging from −0.97 to −1.32 eV and exhibit low diffusion energy barriers across multiple pathways, with respective value of 0.36 eV and 0.41 eV for Au-supported and Ir-supported systems. This study not only provides critical theoretical guidance for the controlled synthesis of BNRs but also highlights their promising potential as advanced electrode materials for rechargeable energy storage systems.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"711 \",\"pages\":\"Article 164052\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225017672\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225017672","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硼罗芬纳米带(BNRs)是最近通过先进的制造技术合成的一维纳米结构,相对于它们的二维类似物,表现出显著增强的量子约束效应。通过系统采用基于计算,全面调查浅层和五个不同金属之间的界面相互作用底物:Ag(1 1 1),非盟(1 1 1)铜(1 1 1)、Al(1 1 1)和红外(1 1 1)。利用结合能、电子能带结构、局域态密度、电子局域化函数和静电势分析等多种表征指标,阐明了bnr /金属杂化体系的基本界面性质。我们的计算结果表明,Au和Cu衬底有利于bnr的外延生长,并保持较低的界面隧道势垒。模拟扫描隧道显微镜图像为这些bnr提供了直接的实验验证标准。此外,在锂离子电池应用中,这些基于bnr的系统表现出强大的锂吸附能力,结合能范围为- 0.97至- 1.32 eV,并且在多个途径中表现出低扩散能势,au和ir支持的系统分别为0.36 eV和0.41 eV。该研究不仅为bnr的受控合成提供了重要的理论指导,而且突出了bnr作为可充电储能系统的先进电极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Substrate-mediated interactions in borophene nanoribbon systems: implications for lithium storage applications

Substrate-mediated interactions in borophene nanoribbon systems: implications for lithium storage applications

Substrate-mediated interactions in borophene nanoribbon systems: implications for lithium storage applications
Borophene nanoribbons (BNRs), one-dimensional nanostructures recently synthesized through advanced fabrication techniques, demonstrate significantly enhanced quantum confinement effects relative to their two-dimensional analogues. Through systematic first-principles calculations, we comprehensively investigate the interfacial interactions between BNRs and five distinct metal substrates: Ag(1 1 1), Au(1 1 1), Cu(1 1 1), Al(1 1 1), and Ir(1 1 1). Multiple characterization metrics, including binding energies, electronic band structures, local density of states, electron localization function, and electrostatic potential analysis, are employed to elucidate the fundamental interfacial properties of BNRs/metal hybrid systems. Our computational results reveal that Au and Cu substrates favor the epitaxial growth of BNRs and maintain lower interfacial tunneling barriers. Simulated scanning tunneling microscopy images for these BNRs provide direct experimental validation criteria. Furthermore, in lithium-ion battery applications, these BNR-based systems demonstrate strong lithium adsorption capabilities with binding energies ranging from −0.97 to −1.32 eV and exhibit low diffusion energy barriers across multiple pathways, with respective value of 0.36 eV and 0.41 eV for Au-supported and Ir-supported systems. This study not only provides critical theoretical guidance for the controlled synthesis of BNRs but also highlights their promising potential as advanced electrode materials for rechargeable energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信