面向脑电图监测动作观察范式的机械手类人社交机器人集成。

Anh T Nguyen, Hao Zhang, Tian Tan, Mohammad Abrar, Yuxin Zhang, Michelle J Johnson
{"title":"面向脑电图监测动作观察范式的机械手类人社交机器人集成。","authors":"Anh T Nguyen, Hao Zhang, Tian Tan, Mohammad Abrar, Yuxin Zhang, Michelle J Johnson","doi":"10.1109/ICORR66766.2025.11062928","DOIUrl":null,"url":null,"abstract":"<p><p>Action Observation (AO) therapy leverages the mirror neuron system (MNS) and may support motor recovery in neurorehabilitation. In this study, we integrated Flo v2, a humanoid robot equipped with grippers and object detection system, into an AO therapy paradigm with electroencephalography (EEG) monitoring. Flo v2's enhanced design enables the execution of upper-limb actions, either transitive (involving object interaction such as grasping a cup) or intransitive (gesture-based without object manipulation such as waving). The robot control is synchronized with EEG recording to facilitate the investigation of cortical responses during AO tasks. We also conducted a case study to assess of the upgraded robot system's feasibility. Three healthy participants observed and imitated robot-performed actions, where the robot actor was in person or on videos. Exploratory analyses of EEG signals examined sensorimotor mu event-related desynchronization (ERD) during video-based and in-person AO tasks. Results indicated stronger responses during bimanual and transitive AO in the in-person settings. However, individual variability in cortical responses was evident, with one subject showing less pronounced ERD patterns, and that comparisons of mu ERDs across different types of action in video-based AO settings were inconsistent among subjects. Flo v2's enhancements demonstrated its feasibility as a tool for robot-mediated AOE therapy and highlighted potential for further neurorehabilitation research.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2025 ","pages":"1699-1705"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of a Gripper-Equipped Humanoid Social Robot for EEG-Monitored Action Observation Paradigms.\",\"authors\":\"Anh T Nguyen, Hao Zhang, Tian Tan, Mohammad Abrar, Yuxin Zhang, Michelle J Johnson\",\"doi\":\"10.1109/ICORR66766.2025.11062928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Action Observation (AO) therapy leverages the mirror neuron system (MNS) and may support motor recovery in neurorehabilitation. In this study, we integrated Flo v2, a humanoid robot equipped with grippers and object detection system, into an AO therapy paradigm with electroencephalography (EEG) monitoring. Flo v2's enhanced design enables the execution of upper-limb actions, either transitive (involving object interaction such as grasping a cup) or intransitive (gesture-based without object manipulation such as waving). The robot control is synchronized with EEG recording to facilitate the investigation of cortical responses during AO tasks. We also conducted a case study to assess of the upgraded robot system's feasibility. Three healthy participants observed and imitated robot-performed actions, where the robot actor was in person or on videos. Exploratory analyses of EEG signals examined sensorimotor mu event-related desynchronization (ERD) during video-based and in-person AO tasks. Results indicated stronger responses during bimanual and transitive AO in the in-person settings. However, individual variability in cortical responses was evident, with one subject showing less pronounced ERD patterns, and that comparisons of mu ERDs across different types of action in video-based AO settings were inconsistent among subjects. Flo v2's enhancements demonstrated its feasibility as a tool for robot-mediated AOE therapy and highlighted potential for further neurorehabilitation research.</p>\",\"PeriodicalId\":73276,\"journal\":{\"name\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"volume\":\"2025 \",\"pages\":\"1699-1705\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR66766.2025.11062928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR66766.2025.11062928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动作观察(AO)疗法利用镜像神经元系统(MNS),可能支持神经康复中的运动恢复。在这项研究中,我们将Flo v2,一个配有抓手和物体检测系统的人形机器人,整合到一个具有脑电图监测的AO治疗范例中。Flo v2的增强设计支持上肢动作的执行,无论是传递的(涉及对象交互,如抓杯子)还是非传递的(基于手势,没有对象操作,如挥手)。机器人控制与脑电图记录同步,以便于研究AO任务期间的皮层反应。我们还进行了一个案例研究来评估升级后的机器人系统的可行性。三名健康的参与者观察并模仿机器人表演的动作,其中机器人演员亲自或在视频中表演。脑电信号的探索性分析检查了基于视频和面对面AO任务中的感觉运动mu事件相关去同步(ERD)。结果表明,在面对面的情况下,双手和传递性AO的反应更强。然而,皮层反应的个体差异是明显的,一个受试者表现出不太明显的ERD模式,并且在基于视频的AO设置中,不同类型动作的mu ERD的比较在受试者之间是不一致的。Flo v2的增强证明了其作为机器人介导的AOE治疗工具的可行性,并强调了进一步神经康复研究的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of a Gripper-Equipped Humanoid Social Robot for EEG-Monitored Action Observation Paradigms.

Action Observation (AO) therapy leverages the mirror neuron system (MNS) and may support motor recovery in neurorehabilitation. In this study, we integrated Flo v2, a humanoid robot equipped with grippers and object detection system, into an AO therapy paradigm with electroencephalography (EEG) monitoring. Flo v2's enhanced design enables the execution of upper-limb actions, either transitive (involving object interaction such as grasping a cup) or intransitive (gesture-based without object manipulation such as waving). The robot control is synchronized with EEG recording to facilitate the investigation of cortical responses during AO tasks. We also conducted a case study to assess of the upgraded robot system's feasibility. Three healthy participants observed and imitated robot-performed actions, where the robot actor was in person or on videos. Exploratory analyses of EEG signals examined sensorimotor mu event-related desynchronization (ERD) during video-based and in-person AO tasks. Results indicated stronger responses during bimanual and transitive AO in the in-person settings. However, individual variability in cortical responses was evident, with one subject showing less pronounced ERD patterns, and that comparisons of mu ERDs across different types of action in video-based AO settings were inconsistent among subjects. Flo v2's enhancements demonstrated its feasibility as a tool for robot-mediated AOE therapy and highlighted potential for further neurorehabilitation research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信