带万能双槽滚子的绳驱动手指外骨骼自适应康复系统设计。

Wenqi Li, Le Bao, Wansoo Kim
{"title":"带万能双槽滚子的绳驱动手指外骨骼自适应康复系统设计。","authors":"Wenqi Li, Le Bao, Wansoo Kim","doi":"10.1109/ICORR66766.2025.11063106","DOIUrl":null,"url":null,"abstract":"<p><p>Impaired hand function caused by neurological conditions, such as stroke, severely limits individuals' ability to perform daily tasks, highlighting the importance of accessible rehabilitation devices. Although the double grooved roller design in existing rope-driven exoskeletons reduces weight and enhances compactness, the different amount of change in the upper and lower traction cords when the fingers are flexed and torsioned can easily lead to slack and slippage of the traction cords, which affects the accuracy of movement. To address these limitations, a rope-driven exoskeleton system with a universal double grooved roller is designed for assisting finger movement based on a study of the index finger. In order to enhance the universal performance of the exoskeleton, in this study, 40 groups of index finger flexion and extension movements with upward and downward stretching are collected and statistically analyzed to find out the universal ratio of double grooved rollers. The experiment tested the finger-driving capability of the exoskeleton device, achieving a range of motion up to 94% of unassisted natural motion, with stable performance during repetitive movements. Additionally, the finger-driving success rate for seven subjects with varying finger sizes reached 100%, and the test results were analyzed in detail. The designed system demonstrates feasibility, reliability, and universality, offering a viable new solution for adaptive hand rehabilitation.</p>","PeriodicalId":73276,"journal":{"name":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","volume":"2025 ","pages":"289-294"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Rope-Driven Finger Exoskeleton System with a Universal Double Grooved Roller for Adaptive Rehabilitation.\",\"authors\":\"Wenqi Li, Le Bao, Wansoo Kim\",\"doi\":\"10.1109/ICORR66766.2025.11063106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Impaired hand function caused by neurological conditions, such as stroke, severely limits individuals' ability to perform daily tasks, highlighting the importance of accessible rehabilitation devices. Although the double grooved roller design in existing rope-driven exoskeletons reduces weight and enhances compactness, the different amount of change in the upper and lower traction cords when the fingers are flexed and torsioned can easily lead to slack and slippage of the traction cords, which affects the accuracy of movement. To address these limitations, a rope-driven exoskeleton system with a universal double grooved roller is designed for assisting finger movement based on a study of the index finger. In order to enhance the universal performance of the exoskeleton, in this study, 40 groups of index finger flexion and extension movements with upward and downward stretching are collected and statistically analyzed to find out the universal ratio of double grooved rollers. The experiment tested the finger-driving capability of the exoskeleton device, achieving a range of motion up to 94% of unassisted natural motion, with stable performance during repetitive movements. Additionally, the finger-driving success rate for seven subjects with varying finger sizes reached 100%, and the test results were analyzed in detail. The designed system demonstrates feasibility, reliability, and universality, offering a viable new solution for adaptive hand rehabilitation.</p>\",\"PeriodicalId\":73276,\"journal\":{\"name\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"volume\":\"2025 \",\"pages\":\"289-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR66766.2025.11063106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Rehabilitation Robotics : [proceedings]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR66766.2025.11063106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由神经系统疾病(如中风)引起的手功能受损严重限制了个人执行日常任务的能力,这突出了无障碍康复装置的重要性。虽然现有绳驱动外骨骼采用双沟槽滚轮设计,减轻了重量,增强了紧凑性,但手指弯曲和扭转时上下牵引索的变化量不同,容易导致牵引索松弛和打滑,影响运动的准确性。为了解决这些限制,基于对食指的研究,设计了一种带通用双槽滚轮的绳驱动外骨骼系统,以帮助手指运动。为了增强外骨骼的通用性,本研究收集了40组食指上下拉伸的屈伸动作,并进行统计分析,找出双沟槽滚子的通用性比。实验测试了外骨骼设备的手指驱动能力,实现了高达94%的无辅助自然运动的运动范围,在重复运动中表现稳定。此外,7名不同手指大小的受试者手指驾驶成功率均达到100%,并对测试结果进行了详细分析。该系统具有可行性、可靠性和通用性,为手部自适应康复提供了一种可行的新方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a Rope-Driven Finger Exoskeleton System with a Universal Double Grooved Roller for Adaptive Rehabilitation.

Impaired hand function caused by neurological conditions, such as stroke, severely limits individuals' ability to perform daily tasks, highlighting the importance of accessible rehabilitation devices. Although the double grooved roller design in existing rope-driven exoskeletons reduces weight and enhances compactness, the different amount of change in the upper and lower traction cords when the fingers are flexed and torsioned can easily lead to slack and slippage of the traction cords, which affects the accuracy of movement. To address these limitations, a rope-driven exoskeleton system with a universal double grooved roller is designed for assisting finger movement based on a study of the index finger. In order to enhance the universal performance of the exoskeleton, in this study, 40 groups of index finger flexion and extension movements with upward and downward stretching are collected and statistically analyzed to find out the universal ratio of double grooved rollers. The experiment tested the finger-driving capability of the exoskeleton device, achieving a range of motion up to 94% of unassisted natural motion, with stable performance during repetitive movements. Additionally, the finger-driving success rate for seven subjects with varying finger sizes reached 100%, and the test results were analyzed in detail. The designed system demonstrates feasibility, reliability, and universality, offering a viable new solution for adaptive hand rehabilitation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信