微等离子体电解氧化制备高效多金属合金纳米催化剂

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jun Zhou , Yuqi Qin , Yue Yin , Liwen Ma , Zhaodong Li , Sitong Liu , Xiaoqing Cao , Yan Wang
{"title":"微等离子体电解氧化制备高效多金属合金纳米催化剂","authors":"Jun Zhou ,&nbsp;Yuqi Qin ,&nbsp;Yue Yin ,&nbsp;Liwen Ma ,&nbsp;Zhaodong Li ,&nbsp;Sitong Liu ,&nbsp;Xiaoqing Cao ,&nbsp;Yan Wang","doi":"10.1016/j.matlet.2025.139091","DOIUrl":null,"url":null,"abstract":"<div><div>Multimetallic alloy nanocatalysts are of significant interest due to their superior catalytic properties, offering substantial advantages for chemical conversion and petroleum refining applications. However, conventional powder-based multimetallic catalysts often face issues such as non-uniform dispersion of active components and challenging catalyst recovery. In this study, we propose a novel in-situ synthesis method for multimetallic alloy nanocatalysts via microplasma electrolytic oxidation (MPEO) on helical magnesium and aluminum wire substrates. This microplasma-based approach generates localized high temperatures and pressures conditions, effectively decomposing precursor salts into uniformly dispersed alloy nanoparticles. Specifically, two multimetallic alloy nanocatalysts; Fe<sub>3.4</sub>Co<sub>2.7</sub>Ni<sub>3.3</sub>Ru<sub>1.3</sub>Pd<sub>0.74</sub> and Fe<sub>2.7</sub>Co<sub>2.9</sub>Ni<sub>2.9</sub>Ru<sub>2.3</sub>Pt<sub>0.2</sub>, were successfully synthesized on magnesium and aluminum wire surfaces, respectively. Detailed characterization via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the porous surface morphology and uniform distribution of active catalytic components. Catalytic performance tests revealed demonstrated exceptional performance; the Fe<sub>3.4</sub>Co<sub>2.7</sub>Ni<sub>3.3</sub>Ru<sub>1.3</sub>Pd<sub>0.74</sub> nanocatalyst exhibited a high acetylene hydrogenation conversion of 99.79 % with selectivity up to 94.99 %, whereas the Fe<sub>2.7</sub>Co<sub>2.9</sub>Ni<sub>2.9</sub>Ru<sub>2.3</sub>Pt<sub>0.2</sub> nanocatalyst demonstrated a hydrogen production rate of 0.197 mL/s during sodium borohydride hydrolysis. These findings highlight the potential of MPEO technique as a promising pathway for fabricating multimetallic alloy nanocatalysts with broad catalytic applications.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"399 ","pages":"Article 139091"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of multi-metal alloy nanocatalysts using microplasma electrolytic oxidation for high-efficiency catalysis\",\"authors\":\"Jun Zhou ,&nbsp;Yuqi Qin ,&nbsp;Yue Yin ,&nbsp;Liwen Ma ,&nbsp;Zhaodong Li ,&nbsp;Sitong Liu ,&nbsp;Xiaoqing Cao ,&nbsp;Yan Wang\",\"doi\":\"10.1016/j.matlet.2025.139091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multimetallic alloy nanocatalysts are of significant interest due to their superior catalytic properties, offering substantial advantages for chemical conversion and petroleum refining applications. However, conventional powder-based multimetallic catalysts often face issues such as non-uniform dispersion of active components and challenging catalyst recovery. In this study, we propose a novel in-situ synthesis method for multimetallic alloy nanocatalysts via microplasma electrolytic oxidation (MPEO) on helical magnesium and aluminum wire substrates. This microplasma-based approach generates localized high temperatures and pressures conditions, effectively decomposing precursor salts into uniformly dispersed alloy nanoparticles. Specifically, two multimetallic alloy nanocatalysts; Fe<sub>3.4</sub>Co<sub>2.7</sub>Ni<sub>3.3</sub>Ru<sub>1.3</sub>Pd<sub>0.74</sub> and Fe<sub>2.7</sub>Co<sub>2.9</sub>Ni<sub>2.9</sub>Ru<sub>2.3</sub>Pt<sub>0.2</sub>, were successfully synthesized on magnesium and aluminum wire surfaces, respectively. Detailed characterization via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the porous surface morphology and uniform distribution of active catalytic components. Catalytic performance tests revealed demonstrated exceptional performance; the Fe<sub>3.4</sub>Co<sub>2.7</sub>Ni<sub>3.3</sub>Ru<sub>1.3</sub>Pd<sub>0.74</sub> nanocatalyst exhibited a high acetylene hydrogenation conversion of 99.79 % with selectivity up to 94.99 %, whereas the Fe<sub>2.7</sub>Co<sub>2.9</sub>Ni<sub>2.9</sub>Ru<sub>2.3</sub>Pt<sub>0.2</sub> nanocatalyst demonstrated a hydrogen production rate of 0.197 mL/s during sodium borohydride hydrolysis. These findings highlight the potential of MPEO technique as a promising pathway for fabricating multimetallic alloy nanocatalysts with broad catalytic applications.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"399 \",\"pages\":\"Article 139091\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X25011218\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25011218","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多金属合金纳米催化剂由于其优异的催化性能,在化学转化和石油炼制应用中具有显著的优势。然而,传统的粉末基多金属催化剂往往面临活性组分分散不均匀和催化剂回收困难等问题。在这项研究中,我们提出了一种新的多金属合金纳米催化剂的原位合成方法——微等离子体电解氧化(MPEO)在螺旋镁和铝丝衬底上。这种基于微等离子体的方法产生局部高温高压条件,有效地将前驱盐分解成均匀分散的合金纳米颗粒。具体来说,两种多金属合金纳米催化剂;分别在镁线和铝线表面成功合成Fe3.4Co2.7Ni3.3Ru1.3Pd0.74和Fe2.7Co2.9Ni2.9Ru2.3Pt0.2。通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)的详细表征证实了活性催化组分的多孔表面形貌和均匀分布。催化性能测试显示出优异的性能;Fe3.4Co2.7Ni3.3Ru1.3Pd0.74纳米催化剂的乙炔加氢转化率高达99.79%,选择性高达94.99%,而Fe2.7Co2.9Ni2.9Ru2.3Pt0.2纳米催化剂在硼氢化钠水解过程中产氢率为0.197 mL/s。这些发现突出了MPEO技术作为制造多金属合金纳米催化剂的一个有前景的途径的潜力,具有广泛的催化应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of multi-metal alloy nanocatalysts using microplasma electrolytic oxidation for high-efficiency catalysis
Multimetallic alloy nanocatalysts are of significant interest due to their superior catalytic properties, offering substantial advantages for chemical conversion and petroleum refining applications. However, conventional powder-based multimetallic catalysts often face issues such as non-uniform dispersion of active components and challenging catalyst recovery. In this study, we propose a novel in-situ synthesis method for multimetallic alloy nanocatalysts via microplasma electrolytic oxidation (MPEO) on helical magnesium and aluminum wire substrates. This microplasma-based approach generates localized high temperatures and pressures conditions, effectively decomposing precursor salts into uniformly dispersed alloy nanoparticles. Specifically, two multimetallic alloy nanocatalysts; Fe3.4Co2.7Ni3.3Ru1.3Pd0.74 and Fe2.7Co2.9Ni2.9Ru2.3Pt0.2, were successfully synthesized on magnesium and aluminum wire surfaces, respectively. Detailed characterization via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the porous surface morphology and uniform distribution of active catalytic components. Catalytic performance tests revealed demonstrated exceptional performance; the Fe3.4Co2.7Ni3.3Ru1.3Pd0.74 nanocatalyst exhibited a high acetylene hydrogenation conversion of 99.79 % with selectivity up to 94.99 %, whereas the Fe2.7Co2.9Ni2.9Ru2.3Pt0.2 nanocatalyst demonstrated a hydrogen production rate of 0.197 mL/s during sodium borohydride hydrolysis. These findings highlight the potential of MPEO technique as a promising pathway for fabricating multimetallic alloy nanocatalysts with broad catalytic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信