慢性脑卒中和健康人双手合作任务的运动和力动力学

IF 6.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
J. Podobnik, M. Munih, M. Mihelj
{"title":"慢性脑卒中和健康人双手合作任务的运动和力动力学","authors":"J. Podobnik,&nbsp;M. Munih,&nbsp;M. Mihelj","doi":"10.1016/j.bbe.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke rehabilitation often involves the use of haptic robots to improve motor control and bimanual coordination. This study examines how damping affects movement and force dynamics in bimanual tasks performed by healthy participants and participants with chronic stroke using a haptic robotic system equipped with force sensors for each hand. Participants completed tasks at three damping levels: <span><math><mrow><mn>0</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> (no damping), <span><math><mrow><mn>20</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> (low damping), and <span><math><mrow><mn>40</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> (moderate damping). Key parameters for trajectory of movement, velocity, manipulation force, and internal force were analyzed to assess movement stability and control. The results revealed that damping <span><math><mrow><mn>20</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> effectively stabilized movements in persons with stroke, reducing velocity deviations and making their performance more comparable to healthy participants, without introducing excessive resistance. In contrast, damping <span><math><mrow><mn>40</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> acted as resistance training. Participants with stroke exhibited consistently higher internal forces than healthy participants, reflecting compensatory strategies and inefficient motor control. These findings demonstrate that low damping (<span><math><mrow><mn>20</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span>) offers an optimal balance between movement stabilization and resistance, highlighting its potential as a rehabilitation strategy, while moderate damping (<span><math><mrow><mn>40</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span>) may be reserved for resistance training.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"45 3","pages":"Pages 476-484"},"PeriodicalIF":6.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Movement and force dynamics in bimanual cooperative tasks in chronic stroke and healthy individuals\",\"authors\":\"J. Podobnik,&nbsp;M. Munih,&nbsp;M. Mihelj\",\"doi\":\"10.1016/j.bbe.2025.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stroke rehabilitation often involves the use of haptic robots to improve motor control and bimanual coordination. This study examines how damping affects movement and force dynamics in bimanual tasks performed by healthy participants and participants with chronic stroke using a haptic robotic system equipped with force sensors for each hand. Participants completed tasks at three damping levels: <span><math><mrow><mn>0</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> (no damping), <span><math><mrow><mn>20</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> (low damping), and <span><math><mrow><mn>40</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> (moderate damping). Key parameters for trajectory of movement, velocity, manipulation force, and internal force were analyzed to assess movement stability and control. The results revealed that damping <span><math><mrow><mn>20</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> effectively stabilized movements in persons with stroke, reducing velocity deviations and making their performance more comparable to healthy participants, without introducing excessive resistance. In contrast, damping <span><math><mrow><mn>40</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> acted as resistance training. Participants with stroke exhibited consistently higher internal forces than healthy participants, reflecting compensatory strategies and inefficient motor control. These findings demonstrate that low damping (<span><math><mrow><mn>20</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span>) offers an optimal balance between movement stabilization and resistance, highlighting its potential as a rehabilitation strategy, while moderate damping (<span><math><mrow><mn>40</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span>) may be reserved for resistance training.</div></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"45 3\",\"pages\":\"Pages 476-484\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521625000543\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521625000543","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

中风康复通常涉及使用触觉机器人来改善运动控制和双手协调。本研究考察了阻尼如何影响健康参与者和慢性中风参与者在每只手配备力传感器的触觉机器人系统中进行的双手任务的运动和力动力学。参与者在三种阻尼水平下完成任务:0Nm/s(无阻尼)、20Nm/s(低阻尼)和40Nm/s(中等阻尼)。分析了运动轨迹、速度、操纵力和内力等关键参数,以评估运动稳定性和控制性。结果显示,20纳米/秒的阻尼有效地稳定了中风患者的运动,减少了速度偏差,使他们的表现更接近健康参与者,而不会产生过多的阻力。以40Nm/s阻尼作为阻力训练。卒中参与者表现出比健康参与者更高的内力,反映了代偿策略和低效的运动控制。这些研究结果表明,低阻尼(20Nm/s)在运动稳定和阻力之间提供了最佳平衡,突出了其作为康复策略的潜力,而中等阻尼(40Nm/s)可能保留用于阻力训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Movement and force dynamics in bimanual cooperative tasks in chronic stroke and healthy individuals
Stroke rehabilitation often involves the use of haptic robots to improve motor control and bimanual coordination. This study examines how damping affects movement and force dynamics in bimanual tasks performed by healthy participants and participants with chronic stroke using a haptic robotic system equipped with force sensors for each hand. Participants completed tasks at three damping levels: 0Nm/s (no damping), 20Nm/s (low damping), and 40Nm/s (moderate damping). Key parameters for trajectory of movement, velocity, manipulation force, and internal force were analyzed to assess movement stability and control. The results revealed that damping 20Nm/s effectively stabilized movements in persons with stroke, reducing velocity deviations and making their performance more comparable to healthy participants, without introducing excessive resistance. In contrast, damping 40Nm/s acted as resistance training. Participants with stroke exhibited consistently higher internal forces than healthy participants, reflecting compensatory strategies and inefficient motor control. These findings demonstrate that low damping (20Nm/s) offers an optimal balance between movement stabilization and resistance, highlighting its potential as a rehabilitation strategy, while moderate damping (40Nm/s) may be reserved for resistance training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信