{"title":"慢性脑卒中和健康人双手合作任务的运动和力动力学","authors":"J. Podobnik, M. Munih, M. Mihelj","doi":"10.1016/j.bbe.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke rehabilitation often involves the use of haptic robots to improve motor control and bimanual coordination. This study examines how damping affects movement and force dynamics in bimanual tasks performed by healthy participants and participants with chronic stroke using a haptic robotic system equipped with force sensors for each hand. Participants completed tasks at three damping levels: <span><math><mrow><mn>0</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> (no damping), <span><math><mrow><mn>20</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> (low damping), and <span><math><mrow><mn>40</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> (moderate damping). Key parameters for trajectory of movement, velocity, manipulation force, and internal force were analyzed to assess movement stability and control. The results revealed that damping <span><math><mrow><mn>20</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> effectively stabilized movements in persons with stroke, reducing velocity deviations and making their performance more comparable to healthy participants, without introducing excessive resistance. In contrast, damping <span><math><mrow><mn>40</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> acted as resistance training. Participants with stroke exhibited consistently higher internal forces than healthy participants, reflecting compensatory strategies and inefficient motor control. These findings demonstrate that low damping (<span><math><mrow><mn>20</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span>) offers an optimal balance between movement stabilization and resistance, highlighting its potential as a rehabilitation strategy, while moderate damping (<span><math><mrow><mn>40</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span>) may be reserved for resistance training.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"45 3","pages":"Pages 476-484"},"PeriodicalIF":6.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Movement and force dynamics in bimanual cooperative tasks in chronic stroke and healthy individuals\",\"authors\":\"J. Podobnik, M. Munih, M. Mihelj\",\"doi\":\"10.1016/j.bbe.2025.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stroke rehabilitation often involves the use of haptic robots to improve motor control and bimanual coordination. This study examines how damping affects movement and force dynamics in bimanual tasks performed by healthy participants and participants with chronic stroke using a haptic robotic system equipped with force sensors for each hand. Participants completed tasks at three damping levels: <span><math><mrow><mn>0</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> (no damping), <span><math><mrow><mn>20</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> (low damping), and <span><math><mrow><mn>40</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> (moderate damping). Key parameters for trajectory of movement, velocity, manipulation force, and internal force were analyzed to assess movement stability and control. The results revealed that damping <span><math><mrow><mn>20</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> effectively stabilized movements in persons with stroke, reducing velocity deviations and making their performance more comparable to healthy participants, without introducing excessive resistance. In contrast, damping <span><math><mrow><mn>40</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span> acted as resistance training. Participants with stroke exhibited consistently higher internal forces than healthy participants, reflecting compensatory strategies and inefficient motor control. These findings demonstrate that low damping (<span><math><mrow><mn>20</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span>) offers an optimal balance between movement stabilization and resistance, highlighting its potential as a rehabilitation strategy, while moderate damping (<span><math><mrow><mn>40</mn><mspace></mspace><mfrac><mrow><mi>N</mi></mrow><mrow><mi>m</mi><mo>/</mo><mi>s</mi></mrow></mfrac></mrow></math></span>) may be reserved for resistance training.</div></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"45 3\",\"pages\":\"Pages 476-484\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521625000543\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521625000543","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Movement and force dynamics in bimanual cooperative tasks in chronic stroke and healthy individuals
Stroke rehabilitation often involves the use of haptic robots to improve motor control and bimanual coordination. This study examines how damping affects movement and force dynamics in bimanual tasks performed by healthy participants and participants with chronic stroke using a haptic robotic system equipped with force sensors for each hand. Participants completed tasks at three damping levels: (no damping), (low damping), and (moderate damping). Key parameters for trajectory of movement, velocity, manipulation force, and internal force were analyzed to assess movement stability and control. The results revealed that damping effectively stabilized movements in persons with stroke, reducing velocity deviations and making their performance more comparable to healthy participants, without introducing excessive resistance. In contrast, damping acted as resistance training. Participants with stroke exhibited consistently higher internal forces than healthy participants, reflecting compensatory strategies and inefficient motor control. These findings demonstrate that low damping () offers an optimal balance between movement stabilization and resistance, highlighting its potential as a rehabilitation strategy, while moderate damping () may be reserved for resistance training.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.