Malgorzata Wasinska-Kalwa, Adam Mamot, Karol Czubak, Katarzyna Frankowska, Adam Ado Rajkiewicz, Tomasz Spiewla, Marcin Warminski, Zofia Pilch, Marta Szulc-Gasiorowska, Kacper Siekan, Andrzej Dziembowski, Dominika Nowis, Jakub Golab, Joanna Kowalska, Jacek Jemielity
{"title":"体外转录RNA的化学环状化以探索环状mRNA的设计","authors":"Malgorzata Wasinska-Kalwa, Adam Mamot, Karol Czubak, Katarzyna Frankowska, Adam Ado Rajkiewicz, Tomasz Spiewla, Marcin Warminski, Zofia Pilch, Marta Szulc-Gasiorowska, Kacper Siekan, Andrzej Dziembowski, Dominika Nowis, Jakub Golab, Joanna Kowalska, Jacek Jemielity","doi":"10.1038/s41467-025-61775-1","DOIUrl":null,"url":null,"abstract":"<p>Circularization is an important step for therapeutic messenger RNA (mRNA) enhancements. Current enzymatic and ribozymatic-based circularization methods face limitations including sequence constraints, purification challenges, and sub-optimal biological activity. Chemical strategies, while promising, have been restricted to short RNA sequences. Here, we report a method for chemically circularized in vitro transcribed RNAs of various lengths (chem-circRNAs; 35–4000 nt) with circularization efficiencies reaching up to 60%. This approach leverages a 5′ ethylenediamine modification and a periodate-oxidized 3′ end to drive intramolecular reductive amination. We demonstrate that this method is applicable to various sequences and modification compatible. We report the effective separation methods of chem-circRNAs from their linear precursors. We show that protein-coding chem-circRNAs are translationally active in cells and exhibit increased durability, like enzymatically circularized mRNAs. Furthermore, our method allows incorporation of functional modifications, including endocyclic N7-methylguanosine cap and N1-methylpseudouridine, enabling access to chemically defined translationally active circRNAs for therapeutic applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"22 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical circularization of in vitro transcribed RNA for exploring circular mRNA design\",\"authors\":\"Malgorzata Wasinska-Kalwa, Adam Mamot, Karol Czubak, Katarzyna Frankowska, Adam Ado Rajkiewicz, Tomasz Spiewla, Marcin Warminski, Zofia Pilch, Marta Szulc-Gasiorowska, Kacper Siekan, Andrzej Dziembowski, Dominika Nowis, Jakub Golab, Joanna Kowalska, Jacek Jemielity\",\"doi\":\"10.1038/s41467-025-61775-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Circularization is an important step for therapeutic messenger RNA (mRNA) enhancements. Current enzymatic and ribozymatic-based circularization methods face limitations including sequence constraints, purification challenges, and sub-optimal biological activity. Chemical strategies, while promising, have been restricted to short RNA sequences. Here, we report a method for chemically circularized in vitro transcribed RNAs of various lengths (chem-circRNAs; 35–4000 nt) with circularization efficiencies reaching up to 60%. This approach leverages a 5′ ethylenediamine modification and a periodate-oxidized 3′ end to drive intramolecular reductive amination. We demonstrate that this method is applicable to various sequences and modification compatible. We report the effective separation methods of chem-circRNAs from their linear precursors. We show that protein-coding chem-circRNAs are translationally active in cells and exhibit increased durability, like enzymatically circularized mRNAs. Furthermore, our method allows incorporation of functional modifications, including endocyclic N7-methylguanosine cap and N1-methylpseudouridine, enabling access to chemically defined translationally active circRNAs for therapeutic applications.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61775-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61775-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Chemical circularization of in vitro transcribed RNA for exploring circular mRNA design
Circularization is an important step for therapeutic messenger RNA (mRNA) enhancements. Current enzymatic and ribozymatic-based circularization methods face limitations including sequence constraints, purification challenges, and sub-optimal biological activity. Chemical strategies, while promising, have been restricted to short RNA sequences. Here, we report a method for chemically circularized in vitro transcribed RNAs of various lengths (chem-circRNAs; 35–4000 nt) with circularization efficiencies reaching up to 60%. This approach leverages a 5′ ethylenediamine modification and a periodate-oxidized 3′ end to drive intramolecular reductive amination. We demonstrate that this method is applicable to various sequences and modification compatible. We report the effective separation methods of chem-circRNAs from their linear precursors. We show that protein-coding chem-circRNAs are translationally active in cells and exhibit increased durability, like enzymatically circularized mRNAs. Furthermore, our method allows incorporation of functional modifications, including endocyclic N7-methylguanosine cap and N1-methylpseudouridine, enabling access to chemically defined translationally active circRNAs for therapeutic applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.