机器学习辅助的细胞外囊泡评估可以监测心脏移植后的细胞排斥反应。

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Jacopo Burrello, Stefano Panella, Ilaria Barison, Chiara Castellani, Alessio Burrello, Lorenzo Airale, Jessica Goi, Veronica Dusi, Roberto Frigerio, Gino Gerosa, Chiara Tessari, Nicola Pradegan, Giuseppe Toscano, Giovanni Pedrazzini, Mattia Corianò, Francesco Tona, Sara Bolis, Alessandro Gori, Marina Cretich, Marny Fedrigo, Annalisa Angelini, Lucio Barile
{"title":"机器学习辅助的细胞外囊泡评估可以监测心脏移植后的细胞排斥反应。","authors":"Jacopo Burrello, Stefano Panella, Ilaria Barison, Chiara Castellani, Alessio Burrello, Lorenzo Airale, Jessica Goi, Veronica Dusi, Roberto Frigerio, Gino Gerosa, Chiara Tessari, Nicola Pradegan, Giuseppe Toscano, Giovanni Pedrazzini, Mattia Corianò, Francesco Tona, Sara Bolis, Alessandro Gori, Marina Cretich, Marny Fedrigo, Annalisa Angelini, Lucio Barile","doi":"10.1038/s43856-025-00999-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heart transplant rejection, particularly acute cellular rejection (ACR), remains a critical post-operative concern, despite declining incidence rates. Current diagnostic standards rely on invasive endomyocardial biopsy, which presents limitations in sensitivity and reproducibility. There is an unmet need for noninvasive, accurate biomarkers that can detect and monitor rejection. This study aims to evaluate whether extracellular vesicle (EV) surface antigens, analyzed through flow cytometry and interpreted with artificial intelligence (AI), can serve as reliable biomarkers for ACR detection and monitoring in heart transplant recipients.</p><p><strong>Methods: </strong>We conducted a prospective longitudinal cohort study involving 24 heart transplant recipients over a median follow-up of 303 days. A total of 285 blood samples were analyzed for EV surface antigens exploiting two flow cytometry-based protocols. An adaptive AI model (random forest regressor) was developed to interpret EV antigen profiles, dynamically calibrating thresholds per patient.</p><p><strong>Results: </strong>Here we show that 14 EV surface antigens progressively increase with ACR severity. These changes are evident even before histological diagnosis. The AI model achieves an accuracy of 93.3% at leave-one-out testing (AUC 0.968), and 78.9% at validation in an independent cohort (AUC 0.832), with high specificity and negative predictive value. EV profiling outperforms conventional biochemical markers and provides anticipatory insight into rejection dynamics.</p><p><strong>Conclusions: </strong>EV profiling, enhanced by patient-specific AI modeling, offers a powerful noninvasive method for early detection and monitoring of ACR. This approach holds the potential to reduce reliance on biopsies and tailor immunosuppressive strategies more precisely.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"288"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246144/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning-assisted assessment of extracellular vesicles can monitor cellular rejection after heart transplant.\",\"authors\":\"Jacopo Burrello, Stefano Panella, Ilaria Barison, Chiara Castellani, Alessio Burrello, Lorenzo Airale, Jessica Goi, Veronica Dusi, Roberto Frigerio, Gino Gerosa, Chiara Tessari, Nicola Pradegan, Giuseppe Toscano, Giovanni Pedrazzini, Mattia Corianò, Francesco Tona, Sara Bolis, Alessandro Gori, Marina Cretich, Marny Fedrigo, Annalisa Angelini, Lucio Barile\",\"doi\":\"10.1038/s43856-025-00999-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Heart transplant rejection, particularly acute cellular rejection (ACR), remains a critical post-operative concern, despite declining incidence rates. Current diagnostic standards rely on invasive endomyocardial biopsy, which presents limitations in sensitivity and reproducibility. There is an unmet need for noninvasive, accurate biomarkers that can detect and monitor rejection. This study aims to evaluate whether extracellular vesicle (EV) surface antigens, analyzed through flow cytometry and interpreted with artificial intelligence (AI), can serve as reliable biomarkers for ACR detection and monitoring in heart transplant recipients.</p><p><strong>Methods: </strong>We conducted a prospective longitudinal cohort study involving 24 heart transplant recipients over a median follow-up of 303 days. A total of 285 blood samples were analyzed for EV surface antigens exploiting two flow cytometry-based protocols. An adaptive AI model (random forest regressor) was developed to interpret EV antigen profiles, dynamically calibrating thresholds per patient.</p><p><strong>Results: </strong>Here we show that 14 EV surface antigens progressively increase with ACR severity. These changes are evident even before histological diagnosis. The AI model achieves an accuracy of 93.3% at leave-one-out testing (AUC 0.968), and 78.9% at validation in an independent cohort (AUC 0.832), with high specificity and negative predictive value. EV profiling outperforms conventional biochemical markers and provides anticipatory insight into rejection dynamics.</p><p><strong>Conclusions: </strong>EV profiling, enhanced by patient-specific AI modeling, offers a powerful noninvasive method for early detection and monitoring of ACR. This approach holds the potential to reduce reliance on biopsies and tailor immunosuppressive strategies more precisely.</p>\",\"PeriodicalId\":72646,\"journal\":{\"name\":\"Communications medicine\",\"volume\":\"5 1\",\"pages\":\"288\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246144/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43856-025-00999-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00999-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:心脏移植排斥反应,特别是急性细胞排斥反应(ACR),尽管发病率有所下降,但仍然是一个重要的术后问题。目前的诊断标准依赖于侵入性心内膜活检,这在敏感性和可重复性方面存在局限性。对于能够检测和监测排斥反应的无创、准确的生物标志物的需求尚未得到满足。本研究旨在评估细胞外囊泡(EV)表面抗原,通过流式细胞术分析和人工智能(AI)解释,是否可以作为心脏移植受者ACR检测和监测的可靠生物标志物。方法:我们进行了一项前瞻性纵向队列研究,涉及24名心脏移植受者,中位随访时间为303天。利用两种基于流式细胞术的方法分析了285份血液样本的EV表面抗原。开发了自适应人工智能模型(随机森林回归器)来解释EV抗原谱,动态校准每位患者的阈值。结果:14种EV表面抗原随着ACR的严重程度逐渐增加。这些变化甚至在组织学诊断之前就很明显。人工智能模型在留一检验时的准确率为93.3% (AUC 0.968),在独立队列验证时的准确率为78.9% (AUC 0.832),具有较高的特异性和阴性预测值。EV分析优于传统的生化标记,并为排斥动力学提供了预期的见解。结论:通过患者特异性人工智能建模增强的EV谱分析为早期发现和监测ACR提供了一种强大的无创方法。这种方法有可能减少对活组织检查的依赖,并更精确地定制免疫抑制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-assisted assessment of extracellular vesicles can monitor cellular rejection after heart transplant.

Background: Heart transplant rejection, particularly acute cellular rejection (ACR), remains a critical post-operative concern, despite declining incidence rates. Current diagnostic standards rely on invasive endomyocardial biopsy, which presents limitations in sensitivity and reproducibility. There is an unmet need for noninvasive, accurate biomarkers that can detect and monitor rejection. This study aims to evaluate whether extracellular vesicle (EV) surface antigens, analyzed through flow cytometry and interpreted with artificial intelligence (AI), can serve as reliable biomarkers for ACR detection and monitoring in heart transplant recipients.

Methods: We conducted a prospective longitudinal cohort study involving 24 heart transplant recipients over a median follow-up of 303 days. A total of 285 blood samples were analyzed for EV surface antigens exploiting two flow cytometry-based protocols. An adaptive AI model (random forest regressor) was developed to interpret EV antigen profiles, dynamically calibrating thresholds per patient.

Results: Here we show that 14 EV surface antigens progressively increase with ACR severity. These changes are evident even before histological diagnosis. The AI model achieves an accuracy of 93.3% at leave-one-out testing (AUC 0.968), and 78.9% at validation in an independent cohort (AUC 0.832), with high specificity and negative predictive value. EV profiling outperforms conventional biochemical markers and provides anticipatory insight into rejection dynamics.

Conclusions: EV profiling, enhanced by patient-specific AI modeling, offers a powerful noninvasive method for early detection and monitoring of ACR. This approach holds the potential to reduce reliance on biopsies and tailor immunosuppressive strategies more precisely.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信