变应力条件下体外模型细胞外基质成熟。

IF 2.9 3区 医学 Q3 CELL & TISSUE ENGINEERING
Christian A Boehm, Mahmoud Sesa, Vytautas Kucikas, Marc van Zandvoort, Kevin Linka, Stefanie Reese, Stefan Jockenhoevel
{"title":"变应力条件下体外模型细胞外基质成熟。","authors":"Christian A Boehm, Mahmoud Sesa, Vytautas Kucikas, Marc van Zandvoort, Kevin Linka, Stefanie Reese, Stefan Jockenhoevel","doi":"10.1177/19373341251359109","DOIUrl":null,"url":null,"abstract":"<p><p>The study aims to enhance the design process of tissue-engineered implants by evaluating the effects of scaffold reinforcement and cultivation conditions on extracellular matrix (ECM) development. The research investigates the hypothesis that mechanical stress drives ECM production and alignment. Furthermore, we have explored the potential of an <i>in silico</i> growth model to complement <i>in vitro</i> findings for accelerated development processes. The study employed fiber-reinforced and nonreinforced scaffolds fabricated using warp-knitted textiles and fibrin gel. Myofibroblasts embedded in the scaffolds were cultivated under static and dynamic conditions. ECM development was evaluated through mechanical testing, hydroxyproline assays, and microscopy, while an <i>in silico</i> growth model was used to predict ECM behavior. Static cultivation resulted in significant ECM development in both reinforced and nonreinforced samples, with nonreinforced scaffolds showing higher collagen content and alignment along the load direction. In contrast, dynamic cultivation inhibited ECM formation, potentially due to cross-contraction and washout effects. Fiber-reinforced scaffolds exhibited higher elasticity and sustained stress across cycles without structural damage. The <i>in silico</i> model provided valuable insights but overestimated mechanical properties due to limited validation data. Reinforced scaffolds maintained geometry and elasticity, suggesting suitability for load-bearing applications. Nonreinforced scaffolds facilitated higher ECM production but were prone to structural damage. Dynamic cultivation requires optimization, such as prestatic cultivation, to support ECM development. The combined <i>in vitro</i> and <i>in silico</i> approach offers a promising framework for scaffold design, reducing the reliance on iterative experimental processes.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In Vitro</i> Model Extracellular Matrix Maturation Under Variable Stress Conditions.\",\"authors\":\"Christian A Boehm, Mahmoud Sesa, Vytautas Kucikas, Marc van Zandvoort, Kevin Linka, Stefanie Reese, Stefan Jockenhoevel\",\"doi\":\"10.1177/19373341251359109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study aims to enhance the design process of tissue-engineered implants by evaluating the effects of scaffold reinforcement and cultivation conditions on extracellular matrix (ECM) development. The research investigates the hypothesis that mechanical stress drives ECM production and alignment. Furthermore, we have explored the potential of an <i>in silico</i> growth model to complement <i>in vitro</i> findings for accelerated development processes. The study employed fiber-reinforced and nonreinforced scaffolds fabricated using warp-knitted textiles and fibrin gel. Myofibroblasts embedded in the scaffolds were cultivated under static and dynamic conditions. ECM development was evaluated through mechanical testing, hydroxyproline assays, and microscopy, while an <i>in silico</i> growth model was used to predict ECM behavior. Static cultivation resulted in significant ECM development in both reinforced and nonreinforced samples, with nonreinforced scaffolds showing higher collagen content and alignment along the load direction. In contrast, dynamic cultivation inhibited ECM formation, potentially due to cross-contraction and washout effects. Fiber-reinforced scaffolds exhibited higher elasticity and sustained stress across cycles without structural damage. The <i>in silico</i> model provided valuable insights but overestimated mechanical properties due to limited validation data. Reinforced scaffolds maintained geometry and elasticity, suggesting suitability for load-bearing applications. Nonreinforced scaffolds facilitated higher ECM production but were prone to structural damage. Dynamic cultivation requires optimization, such as prestatic cultivation, to support ECM development. The combined <i>in vitro</i> and <i>in silico</i> approach offers a promising framework for scaffold design, reducing the reliance on iterative experimental processes.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/19373341251359109\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19373341251359109","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过评估支架加固和培养条件对细胞外基质(ECM)发育的影响,提高组织工程植入物的设计过程。该研究调查了机械应力驱动ECM生产和对准的假设。此外,我们还探索了硅生长模型的潜力,以补充体外加速发展过程的发现。本研究采用经编织物和纤维蛋白凝胶制备纤维增强和非增强支架。在静态和动态条件下培养包埋在支架中的肌成纤维细胞。通过力学测试、羟脯氨酸测定和显微镜来评估ECM的发育,同时使用硅生长模型来预测ECM的行为。静态培养在增强和未增强的样品中均产生了显著的ECM,未增强的支架显示出更高的胶原含量和沿负载方向的排列。相反,动态培养抑制ECM的形成,可能是由于交叉收缩和冲洗效应。纤维增强支架表现出更高的弹性和跨循环承受应力而没有结构损伤。计算机模型提供了有价值的见解,但由于验证数据有限,高估了机械性能。加固脚手架保持几何形状和弹性,表明适合承重应用。非增强支架促进了更高的ECM产生,但容易造成结构损伤。动态栽培需要优化,如预置栽培,以支持ECM的发展。体外和芯片结合的方法为支架设计提供了一个有前途的框架,减少了对迭代实验过程的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Vitro Model Extracellular Matrix Maturation Under Variable Stress Conditions.

The study aims to enhance the design process of tissue-engineered implants by evaluating the effects of scaffold reinforcement and cultivation conditions on extracellular matrix (ECM) development. The research investigates the hypothesis that mechanical stress drives ECM production and alignment. Furthermore, we have explored the potential of an in silico growth model to complement in vitro findings for accelerated development processes. The study employed fiber-reinforced and nonreinforced scaffolds fabricated using warp-knitted textiles and fibrin gel. Myofibroblasts embedded in the scaffolds were cultivated under static and dynamic conditions. ECM development was evaluated through mechanical testing, hydroxyproline assays, and microscopy, while an in silico growth model was used to predict ECM behavior. Static cultivation resulted in significant ECM development in both reinforced and nonreinforced samples, with nonreinforced scaffolds showing higher collagen content and alignment along the load direction. In contrast, dynamic cultivation inhibited ECM formation, potentially due to cross-contraction and washout effects. Fiber-reinforced scaffolds exhibited higher elasticity and sustained stress across cycles without structural damage. The in silico model provided valuable insights but overestimated mechanical properties due to limited validation data. Reinforced scaffolds maintained geometry and elasticity, suggesting suitability for load-bearing applications. Nonreinforced scaffolds facilitated higher ECM production but were prone to structural damage. Dynamic cultivation requires optimization, such as prestatic cultivation, to support ECM development. The combined in vitro and in silico approach offers a promising framework for scaffold design, reducing the reliance on iterative experimental processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信