利用口腔全景成像技术自动估计青少年牙齿年龄。

IF 1.8 Q3 DENTISTRY, ORAL SURGERY & MEDICINE
Frontiers in dental medicine Pub Date : 2025-06-26 eCollection Date: 2025-01-01 DOI:10.3389/fdmed.2025.1618246
Ze Li, Ning Xiao, Xiaoru Nan, Kejian Chen, Yingjiao Zhao, Shaobo Wang, Xiangjie Guo, Cairong Gao
{"title":"利用口腔全景成像技术自动估计青少年牙齿年龄。","authors":"Ze Li, Ning Xiao, Xiaoru Nan, Kejian Chen, Yingjiao Zhao, Shaobo Wang, Xiangjie Guo, Cairong Gao","doi":"10.3389/fdmed.2025.1618246","DOIUrl":null,"url":null,"abstract":"<p><strong>Object: </strong>In forensic dentistry, dental age estimation assists experts in determining the age of victims or suspects, which is vital for legal responsibility and sentencing. The traditional Demirjian method assesses the development of seven mandibular teeth in pediatric dentistry, but it is time-consuming and relies heavily on subjective judgment.</p><p><strong>Methods: </strong>This study constructed a largescale panoramic dental image dataset and applied various convolutional neural network (CNN) models for automated age estimation.</p><p><strong>Results: </strong>Model performance was evaluated using loss curves, residual histograms, and normal PP plots. Age prediction models were built separately for the total, female, and male samples. The best models yielded mean absolute errors of 1.24, 1.28, and 1.15 years, respectively.</p><p><strong>Discussion: </strong>These findings confirm the effectiveness of deep learning models in dental age estimation, particularly among northern Chinese adolescents.</p>","PeriodicalId":73077,"journal":{"name":"Frontiers in dental medicine","volume":"6 ","pages":"1618246"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241049/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic dental age estimation in adolescents via oral panoramic imaging.\",\"authors\":\"Ze Li, Ning Xiao, Xiaoru Nan, Kejian Chen, Yingjiao Zhao, Shaobo Wang, Xiangjie Guo, Cairong Gao\",\"doi\":\"10.3389/fdmed.2025.1618246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Object: </strong>In forensic dentistry, dental age estimation assists experts in determining the age of victims or suspects, which is vital for legal responsibility and sentencing. The traditional Demirjian method assesses the development of seven mandibular teeth in pediatric dentistry, but it is time-consuming and relies heavily on subjective judgment.</p><p><strong>Methods: </strong>This study constructed a largescale panoramic dental image dataset and applied various convolutional neural network (CNN) models for automated age estimation.</p><p><strong>Results: </strong>Model performance was evaluated using loss curves, residual histograms, and normal PP plots. Age prediction models were built separately for the total, female, and male samples. The best models yielded mean absolute errors of 1.24, 1.28, and 1.15 years, respectively.</p><p><strong>Discussion: </strong>These findings confirm the effectiveness of deep learning models in dental age estimation, particularly among northern Chinese adolescents.</p>\",\"PeriodicalId\":73077,\"journal\":{\"name\":\"Frontiers in dental medicine\",\"volume\":\"6 \",\"pages\":\"1618246\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241049/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in dental medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdmed.2025.1618246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in dental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdmed.2025.1618246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:在法医牙医学中,牙龄估算有助于专家确定被害人或犯罪嫌疑人的年龄,对法律责任和量刑具有重要意义。传统的Demirjian法在儿童牙科中对7颗下颌骨牙齿的发育进行评估,但费时且严重依赖主观判断。方法:构建大规模牙齿全景图像数据集,应用各种卷积神经网络(CNN)模型进行自动年龄估计。结果:使用损失曲线、残差直方图和正态PP图评估模型性能。分别为总样本、女性样本和男性样本建立年龄预测模型。最佳模型的平均绝对误差分别为1.24、1.28和1.15年。讨论:这些发现证实了深度学习模型在牙齿年龄估计方面的有效性,特别是在中国北方青少年中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic dental age estimation in adolescents via oral panoramic imaging.

Object: In forensic dentistry, dental age estimation assists experts in determining the age of victims or suspects, which is vital for legal responsibility and sentencing. The traditional Demirjian method assesses the development of seven mandibular teeth in pediatric dentistry, but it is time-consuming and relies heavily on subjective judgment.

Methods: This study constructed a largescale panoramic dental image dataset and applied various convolutional neural network (CNN) models for automated age estimation.

Results: Model performance was evaluated using loss curves, residual histograms, and normal PP plots. Age prediction models were built separately for the total, female, and male samples. The best models yielded mean absolute errors of 1.24, 1.28, and 1.15 years, respectively.

Discussion: These findings confirm the effectiveness of deep learning models in dental age estimation, particularly among northern Chinese adolescents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信