{"title":"揭示低频rTMS诱导精神分裂症患者听觉言语幻觉功能连接密度变化的遗传和分子基础","authors":"Yuanjun Xie, Muzhen Guan, Tian Zhang, Chaozong Ma, Chenxi Li, Lingling Wang, Xinxin Lin, Yijun Li, Zhongheng Wang, Ma Zhujing, Huaning Wang, Peng Fang","doi":"10.1038/s41398-025-03459-4","DOIUrl":null,"url":null,"abstract":"<p><p>Auditory verbal hallucinations (AVH) represent a substantial therapeutic challenge in schizophrenia. Low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated potential in reducing AVH, yet the underlying neurobiological mechanisms remain incompletely understood. This study investigated the genetic and molecular processes associated with functional connectivity density (FCD) changes induced by 1 Hz rTMS in schizophrenia patients with AVH. The results revealed that the active stimulation group exhibited significant improvement in positive symptoms and AVH severity compared to the sham control group. Specifically, rTMS increased FCD within the frontoparietal network while decreasing FCD in the language network. Notably, baseline FCD values in these networks were predictive of the extent of symptom amelioration. Gene enrichment analysis indicated that rTMS-induced FCD changes were linked to molecular pathways critical for cellular homeostasis and neuronal function. Among the identified hub genes, GAL emerged as a key regulator of these alternations. Furthermore, neurotransmitter systems were implicated, with alterations in mu-opioid (MU) receptor density mediating the effects of GAL on FCD modifications. These findings highlight a multifaceted interplay among genetic, molecular, and connectivity-based mechanisms underlying the therapeutic efficacy of rTMS in treating AVH.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"237"},"PeriodicalIF":5.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246078/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unravelling the genetic and molecular basis of low-frequency rTMS induced changes in functional connectivity density in schizophrenia patients with auditory verbal hallucinations.\",\"authors\":\"Yuanjun Xie, Muzhen Guan, Tian Zhang, Chaozong Ma, Chenxi Li, Lingling Wang, Xinxin Lin, Yijun Li, Zhongheng Wang, Ma Zhujing, Huaning Wang, Peng Fang\",\"doi\":\"10.1038/s41398-025-03459-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Auditory verbal hallucinations (AVH) represent a substantial therapeutic challenge in schizophrenia. Low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated potential in reducing AVH, yet the underlying neurobiological mechanisms remain incompletely understood. This study investigated the genetic and molecular processes associated with functional connectivity density (FCD) changes induced by 1 Hz rTMS in schizophrenia patients with AVH. The results revealed that the active stimulation group exhibited significant improvement in positive symptoms and AVH severity compared to the sham control group. Specifically, rTMS increased FCD within the frontoparietal network while decreasing FCD in the language network. Notably, baseline FCD values in these networks were predictive of the extent of symptom amelioration. Gene enrichment analysis indicated that rTMS-induced FCD changes were linked to molecular pathways critical for cellular homeostasis and neuronal function. Among the identified hub genes, GAL emerged as a key regulator of these alternations. Furthermore, neurotransmitter systems were implicated, with alterations in mu-opioid (MU) receptor density mediating the effects of GAL on FCD modifications. These findings highlight a multifaceted interplay among genetic, molecular, and connectivity-based mechanisms underlying the therapeutic efficacy of rTMS in treating AVH.</p>\",\"PeriodicalId\":23278,\"journal\":{\"name\":\"Translational Psychiatry\",\"volume\":\"15 1\",\"pages\":\"237\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246078/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41398-025-03459-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03459-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Unravelling the genetic and molecular basis of low-frequency rTMS induced changes in functional connectivity density in schizophrenia patients with auditory verbal hallucinations.
Auditory verbal hallucinations (AVH) represent a substantial therapeutic challenge in schizophrenia. Low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated potential in reducing AVH, yet the underlying neurobiological mechanisms remain incompletely understood. This study investigated the genetic and molecular processes associated with functional connectivity density (FCD) changes induced by 1 Hz rTMS in schizophrenia patients with AVH. The results revealed that the active stimulation group exhibited significant improvement in positive symptoms and AVH severity compared to the sham control group. Specifically, rTMS increased FCD within the frontoparietal network while decreasing FCD in the language network. Notably, baseline FCD values in these networks were predictive of the extent of symptom amelioration. Gene enrichment analysis indicated that rTMS-induced FCD changes were linked to molecular pathways critical for cellular homeostasis and neuronal function. Among the identified hub genes, GAL emerged as a key regulator of these alternations. Furthermore, neurotransmitter systems were implicated, with alterations in mu-opioid (MU) receptor density mediating the effects of GAL on FCD modifications. These findings highlight a multifaceted interplay among genetic, molecular, and connectivity-based mechanisms underlying the therapeutic efficacy of rTMS in treating AVH.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.