用于人类癌症和HSC移植的Il2rg和Prkdc几乎完全缺失的NOD SCID小鼠的产生

IF 2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
You-Min Kim, Hee Ju Na, Do Hee Kwon, Jae Hoon Lee, Bo Min Park, Subin Lee, Tae Wook Nam, Mi Yeon Park, Sun Ha Park, Sung Joo Kim, Bongkum Choi, Han-Woong Lee
{"title":"用于人类癌症和HSC移植的Il2rg和Prkdc几乎完全缺失的NOD SCID小鼠的产生","authors":"You-Min Kim, Hee Ju Na, Do Hee Kwon, Jae Hoon Lee, Bo Min Park, Subin Lee, Tae Wook Nam, Mi Yeon Park, Sun Ha Park, Sung Joo Kim, Bongkum Choi, Han-Woong Lee","doi":"10.1007/s11248-025-00454-9","DOIUrl":null,"url":null,"abstract":"<p><p>Immunodeficient mouse models are invaluable tools for preclinical research, particularly for cancer therapies and studies of the human immune system. Notably, strains with combined Prkdc (scid) and Il2rg (null) mutations-such as NOG and NSG mice- are widely used due to their profound immunodeficiency, allowing efficient engraftment of various human cells. However, these models were generated by disrupting the Il2rg gene through replacement with a neomycin resistance (Neo) cassette in embryonic stem cells. Incomplete excision of this cassette can inadvertently alter the expression of neighboring genes, thereby introducing potential confounding variables. In addition, they may still express mutant mRNAs that escape nonsense-mediated decay (NMD) and/or produce truncated proteins with residual activity, potentially compromising the interpretation of experimental outcomes. To address this, we developed the N2G mouse strain (NOD-2-Genes KO) where almost all genomic loci of both Prkdc and Il2rg genes are deleted via CRISPR/Cas9 genome editing. N2G mice exhibited tumor growth comparable to NOG mice following the transplantation with several human cancer cell lines. Moreover, human CD34<sup>+</sup> cord blood (CB) cells engrafted into N2G mice showed robust reconstitution of human immune cells, especially T cells in peripheral blood, spleen and bone marrow, compared to NSG mice. These results suggest that N2G mice, lacking residual mutant mRNA and the exogenous Neo resistant gene, offer an advanced model for preclinical studies.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"34 1","pages":"35"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254168/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generation of NOD SCID mice with near-complete deletions of Il2rg and Prkdc for human cancer and HSC engraftment.\",\"authors\":\"You-Min Kim, Hee Ju Na, Do Hee Kwon, Jae Hoon Lee, Bo Min Park, Subin Lee, Tae Wook Nam, Mi Yeon Park, Sun Ha Park, Sung Joo Kim, Bongkum Choi, Han-Woong Lee\",\"doi\":\"10.1007/s11248-025-00454-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunodeficient mouse models are invaluable tools for preclinical research, particularly for cancer therapies and studies of the human immune system. Notably, strains with combined Prkdc (scid) and Il2rg (null) mutations-such as NOG and NSG mice- are widely used due to their profound immunodeficiency, allowing efficient engraftment of various human cells. However, these models were generated by disrupting the Il2rg gene through replacement with a neomycin resistance (Neo) cassette in embryonic stem cells. Incomplete excision of this cassette can inadvertently alter the expression of neighboring genes, thereby introducing potential confounding variables. In addition, they may still express mutant mRNAs that escape nonsense-mediated decay (NMD) and/or produce truncated proteins with residual activity, potentially compromising the interpretation of experimental outcomes. To address this, we developed the N2G mouse strain (NOD-2-Genes KO) where almost all genomic loci of both Prkdc and Il2rg genes are deleted via CRISPR/Cas9 genome editing. N2G mice exhibited tumor growth comparable to NOG mice following the transplantation with several human cancer cell lines. Moreover, human CD34<sup>+</sup> cord blood (CB) cells engrafted into N2G mice showed robust reconstitution of human immune cells, especially T cells in peripheral blood, spleen and bone marrow, compared to NSG mice. These results suggest that N2G mice, lacking residual mutant mRNA and the exogenous Neo resistant gene, offer an advanced model for preclinical studies.</p>\",\"PeriodicalId\":23258,\"journal\":{\"name\":\"Transgenic Research\",\"volume\":\"34 1\",\"pages\":\"35\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254168/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transgenic Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11248-025-00454-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-025-00454-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

免疫缺陷小鼠模型是临床前研究的宝贵工具,特别是对于癌症治疗和人类免疫系统的研究。值得注意的是,Prkdc (scid)和Il2rg (null)联合突变的菌株-如NOG和NSG小鼠-由于其深度免疫缺陷而被广泛使用,可以有效地植入各种人类细胞。然而,这些模型是通过在胚胎干细胞中用新霉素抗性(Neo)盒替代破坏Il2rg基因而产生的。不完全切除这种磁带可能会无意中改变邻近基因的表达,从而引入潜在的混杂变量。此外,它们可能仍然表达逃避无义介导的衰变(NMD)和/或产生具有剩余活性的截断蛋白的突变mrna,这可能会影响实验结果的解释。为了解决这个问题,我们开发了N2G小鼠品系(NOD-2-Genes KO),其中通过CRISPR/Cas9基因组编辑几乎删除了Prkdc和Il2rg基因的所有基因组位点。在移植了几种人类癌细胞系后,N2G小鼠的肿瘤生长与NOG小鼠相当。此外,与NSG小鼠相比,移植的人CD34+脐带血(CB)细胞在N2G小鼠中表现出较强的人免疫细胞重建,尤其是外周血、脾脏和骨髓中的T细胞。这些结果表明,缺乏残留突变mRNA和外源Neo耐药基因的N2G小鼠为临床前研究提供了一种先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generation of NOD SCID mice with near-complete deletions of Il2rg and Prkdc for human cancer and HSC engraftment.

Generation of NOD SCID mice with near-complete deletions of Il2rg and Prkdc for human cancer and HSC engraftment.

Generation of NOD SCID mice with near-complete deletions of Il2rg and Prkdc for human cancer and HSC engraftment.

Generation of NOD SCID mice with near-complete deletions of Il2rg and Prkdc for human cancer and HSC engraftment.

Immunodeficient mouse models are invaluable tools for preclinical research, particularly for cancer therapies and studies of the human immune system. Notably, strains with combined Prkdc (scid) and Il2rg (null) mutations-such as NOG and NSG mice- are widely used due to their profound immunodeficiency, allowing efficient engraftment of various human cells. However, these models were generated by disrupting the Il2rg gene through replacement with a neomycin resistance (Neo) cassette in embryonic stem cells. Incomplete excision of this cassette can inadvertently alter the expression of neighboring genes, thereby introducing potential confounding variables. In addition, they may still express mutant mRNAs that escape nonsense-mediated decay (NMD) and/or produce truncated proteins with residual activity, potentially compromising the interpretation of experimental outcomes. To address this, we developed the N2G mouse strain (NOD-2-Genes KO) where almost all genomic loci of both Prkdc and Il2rg genes are deleted via CRISPR/Cas9 genome editing. N2G mice exhibited tumor growth comparable to NOG mice following the transplantation with several human cancer cell lines. Moreover, human CD34+ cord blood (CB) cells engrafted into N2G mice showed robust reconstitution of human immune cells, especially T cells in peripheral blood, spleen and bone marrow, compared to NSG mice. These results suggest that N2G mice, lacking residual mutant mRNA and the exogenous Neo resistant gene, offer an advanced model for preclinical studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transgenic Research
Transgenic Research 生物-生化研究方法
CiteScore
5.40
自引率
0.00%
发文量
38
审稿时长
4-8 weeks
期刊介绍: Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities. Transgenic Research publishes -Original Papers -Reviews: Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged. -Brief Communications: Should report significant developments in methodology and experimental transgenic higher organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信