飓风后佛罗里达伊恩森林监测的地上生物量密度图。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Inacio T Bueno, Carlos A Silva, Caio Hamamura, Victoria M Donovan, Ajay Sharma, Jiangxiao Qiu, Jinyi Xia, Kody M Brock, Monique B Schlickmann, Jeff W Atkins, Denis R Valle, Jason Vogel, Andres Susaeta, Mauro A Karasinski, Carine Klauberg
{"title":"飓风后佛罗里达伊恩森林监测的地上生物量密度图。","authors":"Inacio T Bueno, Carlos A Silva, Caio Hamamura, Victoria M Donovan, Ajay Sharma, Jiangxiao Qiu, Jinyi Xia, Kody M Brock, Monique B Schlickmann, Jeff W Atkins, Denis R Valle, Jason Vogel, Andres Susaeta, Mauro A Karasinski, Carine Klauberg","doi":"10.1038/s41597-025-05464-0","DOIUrl":null,"url":null,"abstract":"<p><p>Hurricane Ian caused aboveground biomass density (AGBD) losses across Florida's forests in the United States, highlighting the need for accurate, large-scale monitoring tools. We combined Global Ecosystem Dynamics Investigation (GEDI) LiDAR data with synthetic aperture radar (SAR) and passive optical satellite imagery to model GEDI AGBD as a function of image-derived data, enabling predictions across the study area and producing continuous AGBD maps. Validation using in situ field data demonstrated high model performance, with an R<sup>2</sup> of 0.93 and a root mean square difference (RMSD) of 39.3%. Spatial uncertainty reflecting bootstrap-derived variance remained consistent, with relative standard errors around 90% across the years analyzed. The data are accessible through a web application, RapidFEM4D, enabling researchers and stakeholders to assess AGBD maps for areas of interest. These datasets support monitoring forest recovery, assessing carbon dynamics, and guiding post-hurricane management and restoration. The RapidFEM4D platform facilitates access and analysis of Hurricane Ian's impact on Florida's forests, empowering stakeholders with actionable insights and offering a model for similar efforts in other hurricane-prone regions.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1189"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246185/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aboveground biomass density maps for post-hurricane Ian forest monitoring in Florida.\",\"authors\":\"Inacio T Bueno, Carlos A Silva, Caio Hamamura, Victoria M Donovan, Ajay Sharma, Jiangxiao Qiu, Jinyi Xia, Kody M Brock, Monique B Schlickmann, Jeff W Atkins, Denis R Valle, Jason Vogel, Andres Susaeta, Mauro A Karasinski, Carine Klauberg\",\"doi\":\"10.1038/s41597-025-05464-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hurricane Ian caused aboveground biomass density (AGBD) losses across Florida's forests in the United States, highlighting the need for accurate, large-scale monitoring tools. We combined Global Ecosystem Dynamics Investigation (GEDI) LiDAR data with synthetic aperture radar (SAR) and passive optical satellite imagery to model GEDI AGBD as a function of image-derived data, enabling predictions across the study area and producing continuous AGBD maps. Validation using in situ field data demonstrated high model performance, with an R<sup>2</sup> of 0.93 and a root mean square difference (RMSD) of 39.3%. Spatial uncertainty reflecting bootstrap-derived variance remained consistent, with relative standard errors around 90% across the years analyzed. The data are accessible through a web application, RapidFEM4D, enabling researchers and stakeholders to assess AGBD maps for areas of interest. These datasets support monitoring forest recovery, assessing carbon dynamics, and guiding post-hurricane management and restoration. The RapidFEM4D platform facilitates access and analysis of Hurricane Ian's impact on Florida's forests, empowering stakeholders with actionable insights and offering a model for similar efforts in other hurricane-prone regions.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"1189\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246185/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-05464-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05464-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

飓风伊恩造成了美国佛罗里达州森林地上生物量密度(AGBD)的损失,这凸显了对精确、大规模监测工具的需求。我们将全球生态系统动力学调查(GEDI)激光雷达数据与合成孔径雷达(SAR)和无源光学卫星图像相结合,将GEDI AGBD作为图像衍生数据的函数进行建模,从而能够预测整个研究区域并生成连续的AGBD地图。现场数据验证表明,模型具有较高的性能,R2为0.93,均方根差(RMSD)为39.3%。反映自举衍生方差的空间不确定性保持一致,在分析的年份中,相对标准误差约为90%。数据可通过web应用程序RapidFEM4D访问,使研究人员和利益相关者能够评估感兴趣领域的AGBD地图。这些数据集支持监测森林恢复,评估碳动态,并指导飓风后的管理和恢复。RapidFEM4D平台有助于获取和分析飓风伊恩对佛罗里达州森林的影响,为利益相关者提供可操作的见解,并为其他飓风易发地区的类似工作提供模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aboveground biomass density maps for post-hurricane Ian forest monitoring in Florida.

Hurricane Ian caused aboveground biomass density (AGBD) losses across Florida's forests in the United States, highlighting the need for accurate, large-scale monitoring tools. We combined Global Ecosystem Dynamics Investigation (GEDI) LiDAR data with synthetic aperture radar (SAR) and passive optical satellite imagery to model GEDI AGBD as a function of image-derived data, enabling predictions across the study area and producing continuous AGBD maps. Validation using in situ field data demonstrated high model performance, with an R2 of 0.93 and a root mean square difference (RMSD) of 39.3%. Spatial uncertainty reflecting bootstrap-derived variance remained consistent, with relative standard errors around 90% across the years analyzed. The data are accessible through a web application, RapidFEM4D, enabling researchers and stakeholders to assess AGBD maps for areas of interest. These datasets support monitoring forest recovery, assessing carbon dynamics, and guiding post-hurricane management and restoration. The RapidFEM4D platform facilitates access and analysis of Hurricane Ian's impact on Florida's forests, empowering stakeholders with actionable insights and offering a model for similar efforts in other hurricane-prone regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信