{"title":"用于工业酶生产的新解脂耶氏菌基质菌株。","authors":"Djamila Onésime, Esteban Lebrun, Goran Stanajic Petrovic, Ewelina Celińska, Jean-Marc Nicaud","doi":"10.1186/s12934-025-02787-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Yarrowia lipolytica has emerged as a well-established platform for producing a wide range of biomolecules, including recombinant proteins (rProteins). Its robust metabolism and resistance to various environmental stressors make it particularly well-suited as a microbial cell factory. However, additional physiological modifications are still required to fully meet industrial demands. Over years of strain development, Y. lipolytica has been engineered to carry auxotrophic markers, streamline the secretory pathway via deletion of native secretory proteins, prevent filamentation, and enable inducible gene expression systems.</p><p><strong>Results: </strong>In this study, we continued the fine-tuning of Y. lipolytica as a platform for rProtein synthesis, building on previous work. Specifically, we: (i) introduced a third auxotrophy to facilitate more complex genetic engineering strategies, (ii) removed bacterial vector elements (including antibiotic resistance genes) from previous constructs, and (iii) carried out extensive deletions of extracellular proteases and a peroxidase gene. The newly constructed chassis strains, JMY9438 and JMY9451/9452, both bear triple auxotrophies. The latter strain additionally lacks proteolytic activity due to the deletion of five protease genes. We evaluated the rProtein production efficiency of these strains harboring one, two or three integrated copies of the target gene. rProtein expression levels increased with copy number up to two; however, no further improvement was observed with three copies. Notably, the strain with protease deletions and a single gene copy showed the highest rProtein production per cell, while the strain retaining proteases but harboring two copies yielded the highest absolute rProtein levels.</p><p><strong>Conclusions: </strong>We present a new generation of Y. lipolytica chassis strains specifically optimized for recombinant protein production. Our results demonstrate that extensive protease deletions can provide a high-performance genetic background, enabling high-level rProtein production without relying on multi-copy expression strategies.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"164"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247380/pdf/","citationCount":"0","resultStr":"{\"title\":\"New Yarrowia lipolytica chassis strains for industrial enzyme production.\",\"authors\":\"Djamila Onésime, Esteban Lebrun, Goran Stanajic Petrovic, Ewelina Celińska, Jean-Marc Nicaud\",\"doi\":\"10.1186/s12934-025-02787-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Yarrowia lipolytica has emerged as a well-established platform for producing a wide range of biomolecules, including recombinant proteins (rProteins). Its robust metabolism and resistance to various environmental stressors make it particularly well-suited as a microbial cell factory. However, additional physiological modifications are still required to fully meet industrial demands. Over years of strain development, Y. lipolytica has been engineered to carry auxotrophic markers, streamline the secretory pathway via deletion of native secretory proteins, prevent filamentation, and enable inducible gene expression systems.</p><p><strong>Results: </strong>In this study, we continued the fine-tuning of Y. lipolytica as a platform for rProtein synthesis, building on previous work. Specifically, we: (i) introduced a third auxotrophy to facilitate more complex genetic engineering strategies, (ii) removed bacterial vector elements (including antibiotic resistance genes) from previous constructs, and (iii) carried out extensive deletions of extracellular proteases and a peroxidase gene. The newly constructed chassis strains, JMY9438 and JMY9451/9452, both bear triple auxotrophies. The latter strain additionally lacks proteolytic activity due to the deletion of five protease genes. We evaluated the rProtein production efficiency of these strains harboring one, two or three integrated copies of the target gene. rProtein expression levels increased with copy number up to two; however, no further improvement was observed with three copies. Notably, the strain with protease deletions and a single gene copy showed the highest rProtein production per cell, while the strain retaining proteases but harboring two copies yielded the highest absolute rProtein levels.</p><p><strong>Conclusions: </strong>We present a new generation of Y. lipolytica chassis strains specifically optimized for recombinant protein production. Our results demonstrate that extensive protease deletions can provide a high-performance genetic background, enabling high-level rProtein production without relying on multi-copy expression strategies.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":\"24 1\",\"pages\":\"164\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247380/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-025-02787-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02787-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
New Yarrowia lipolytica chassis strains for industrial enzyme production.
Background: Yarrowia lipolytica has emerged as a well-established platform for producing a wide range of biomolecules, including recombinant proteins (rProteins). Its robust metabolism and resistance to various environmental stressors make it particularly well-suited as a microbial cell factory. However, additional physiological modifications are still required to fully meet industrial demands. Over years of strain development, Y. lipolytica has been engineered to carry auxotrophic markers, streamline the secretory pathway via deletion of native secretory proteins, prevent filamentation, and enable inducible gene expression systems.
Results: In this study, we continued the fine-tuning of Y. lipolytica as a platform for rProtein synthesis, building on previous work. Specifically, we: (i) introduced a third auxotrophy to facilitate more complex genetic engineering strategies, (ii) removed bacterial vector elements (including antibiotic resistance genes) from previous constructs, and (iii) carried out extensive deletions of extracellular proteases and a peroxidase gene. The newly constructed chassis strains, JMY9438 and JMY9451/9452, both bear triple auxotrophies. The latter strain additionally lacks proteolytic activity due to the deletion of five protease genes. We evaluated the rProtein production efficiency of these strains harboring one, two or three integrated copies of the target gene. rProtein expression levels increased with copy number up to two; however, no further improvement was observed with three copies. Notably, the strain with protease deletions and a single gene copy showed the highest rProtein production per cell, while the strain retaining proteases but harboring two copies yielded the highest absolute rProtein levels.
Conclusions: We present a new generation of Y. lipolytica chassis strains specifically optimized for recombinant protein production. Our results demonstrate that extensive protease deletions can provide a high-performance genetic background, enabling high-level rProtein production without relying on multi-copy expression strategies.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems