Lorenzo Anconelli, Giovanna Farruggia, Isabella Zafferri, Francesca Borsetti, Stefano Iotti, Francesca Rossi, Jeanette A Maier
{"title":"人骨髓源间充质干细胞形态的病理学分析:细胞衰老的影响。","authors":"Lorenzo Anconelli, Giovanna Farruggia, Isabella Zafferri, Francesca Borsetti, Stefano Iotti, Francesca Rossi, Jeanette A Maier","doi":"10.1111/jmi.70003","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSC) undergo replicative senescence, a state of irreversible cell cycle arrest that limits their utility in regenerative medicine applications. To identify novel markers of senescence useful to enhance the quality of MSC-based therapies, we compared young and senescent human bone marrow-derived mesenchymal stem cells (hMSCs) using a non-invasive, label-free approach based on quantitative phase imaging (QPI) with the Livecyte microscope. Senescent hMSCs demonstrated substantial morphological alterations, including a threefold increase in cell area, elevated dry mass, reduced thickness, and decreased sphericity compared to their younger counterparts. Additionally, motility metrics such as instantaneous velocity and displacement were significantly reduced in senescent cells, underscoring functional impairments that could hinder their therapeutic potential in regenerative medicine. The application of QPI offers a promising tool for monitoring cellular health, identifying, and potentially eliminating, senescent cells to improve the quality and effectiveness of MSC-based therapies.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ptychographic analysis of human bone marrow-derived mesenchymal stem cell morphology: The impact of cell senescence.\",\"authors\":\"Lorenzo Anconelli, Giovanna Farruggia, Isabella Zafferri, Francesca Borsetti, Stefano Iotti, Francesca Rossi, Jeanette A Maier\",\"doi\":\"10.1111/jmi.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mesenchymal stem cells (MSC) undergo replicative senescence, a state of irreversible cell cycle arrest that limits their utility in regenerative medicine applications. To identify novel markers of senescence useful to enhance the quality of MSC-based therapies, we compared young and senescent human bone marrow-derived mesenchymal stem cells (hMSCs) using a non-invasive, label-free approach based on quantitative phase imaging (QPI) with the Livecyte microscope. Senescent hMSCs demonstrated substantial morphological alterations, including a threefold increase in cell area, elevated dry mass, reduced thickness, and decreased sphericity compared to their younger counterparts. Additionally, motility metrics such as instantaneous velocity and displacement were significantly reduced in senescent cells, underscoring functional impairments that could hinder their therapeutic potential in regenerative medicine. The application of QPI offers a promising tool for monitoring cellular health, identifying, and potentially eliminating, senescent cells to improve the quality and effectiveness of MSC-based therapies.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.70003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.70003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
Ptychographic analysis of human bone marrow-derived mesenchymal stem cell morphology: The impact of cell senescence.
Mesenchymal stem cells (MSC) undergo replicative senescence, a state of irreversible cell cycle arrest that limits their utility in regenerative medicine applications. To identify novel markers of senescence useful to enhance the quality of MSC-based therapies, we compared young and senescent human bone marrow-derived mesenchymal stem cells (hMSCs) using a non-invasive, label-free approach based on quantitative phase imaging (QPI) with the Livecyte microscope. Senescent hMSCs demonstrated substantial morphological alterations, including a threefold increase in cell area, elevated dry mass, reduced thickness, and decreased sphericity compared to their younger counterparts. Additionally, motility metrics such as instantaneous velocity and displacement were significantly reduced in senescent cells, underscoring functional impairments that could hinder their therapeutic potential in regenerative medicine. The application of QPI offers a promising tool for monitoring cellular health, identifying, and potentially eliminating, senescent cells to improve the quality and effectiveness of MSC-based therapies.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.