负载吡非尼酮的荧光纳米颗粒通过调节氧化应激抑制肝癌的应用。

IF 3.1 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Ren-Ou Zhou, Neng-Yun Zhang
{"title":"负载吡非尼酮的荧光纳米颗粒通过调节氧化应激抑制肝癌的应用。","authors":"Ren-Ou Zhou, Neng-Yun Zhang","doi":"10.1007/s10895-025-04444-2","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC), a major cause of cancer-related mortality, is closely associated with oxidative stress-induced cellular damage. To address the limitations of pirfenidone (PFD)-notably its poor bioavailability and lack of tumor specificity-a novel fructose-based fluorescent nanoplatform (1-Fru-2-ATPMS@PFD) was rationally designed and constructed. The system integrates synthetic and natural small molecules with a silane-modified organic framework, offering improved stability, drug-loading capacity, and optical responsiveness. Structural characterizations confirmed successful assembly and PFD encapsulation, while fluorescence measurements revealed distinct ratiometric features suitable for drug sensing. Furthermore, in vitro assays demonstrated effective inhibition of HCC cell proliferation and favorable regulation of oxidative stress biomarkers. These results suggest that 1-Fru-2-ATPMS@PFD holds great potential as a dual-functional material for targeted drug delivery and fluorescence-guided therapeutic monitoring in liver cancer treatment.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Pirfenidone-loaded Fluorescence Nanoparticles to Inhibit Hepatocellular Carcinoma by Modulating Oxidative Stress.\",\"authors\":\"Ren-Ou Zhou, Neng-Yun Zhang\",\"doi\":\"10.1007/s10895-025-04444-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocellular carcinoma (HCC), a major cause of cancer-related mortality, is closely associated with oxidative stress-induced cellular damage. To address the limitations of pirfenidone (PFD)-notably its poor bioavailability and lack of tumor specificity-a novel fructose-based fluorescent nanoplatform (1-Fru-2-ATPMS@PFD) was rationally designed and constructed. The system integrates synthetic and natural small molecules with a silane-modified organic framework, offering improved stability, drug-loading capacity, and optical responsiveness. Structural characterizations confirmed successful assembly and PFD encapsulation, while fluorescence measurements revealed distinct ratiometric features suitable for drug sensing. Furthermore, in vitro assays demonstrated effective inhibition of HCC cell proliferation and favorable regulation of oxidative stress biomarkers. These results suggest that 1-Fru-2-ATPMS@PFD holds great potential as a dual-functional material for targeted drug delivery and fluorescence-guided therapeutic monitoring in liver cancer treatment.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-025-04444-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04444-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞癌(HCC)是癌症相关死亡的主要原因,与氧化应激诱导的细胞损伤密切相关。为了解决吡非尼酮(PFD)的局限性,特别是其生物利用度差和缺乏肿瘤特异性,合理设计和构建了一种新型果糖基荧光纳米平台(1-Fru-2-ATPMS@PFD)。该系统将合成和天然小分子与硅烷修饰的有机框架结合在一起,提供了更好的稳定性、载药能力和光学响应性。结构表征证实了成功的组装和PFD封装,而荧光测量显示了适合药物传感的独特比例特征。此外,体外实验表明,它能有效抑制HCC细胞增殖,并对氧化应激生物标志物有良好的调节作用。这些结果表明1-Fru-2-ATPMS@PFD在肝癌治疗中具有作为靶向药物递送和荧光引导治疗监测的双重功能材料的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Pirfenidone-loaded Fluorescence Nanoparticles to Inhibit Hepatocellular Carcinoma by Modulating Oxidative Stress.

Hepatocellular carcinoma (HCC), a major cause of cancer-related mortality, is closely associated with oxidative stress-induced cellular damage. To address the limitations of pirfenidone (PFD)-notably its poor bioavailability and lack of tumor specificity-a novel fructose-based fluorescent nanoplatform (1-Fru-2-ATPMS@PFD) was rationally designed and constructed. The system integrates synthetic and natural small molecules with a silane-modified organic framework, offering improved stability, drug-loading capacity, and optical responsiveness. Structural characterizations confirmed successful assembly and PFD encapsulation, while fluorescence measurements revealed distinct ratiometric features suitable for drug sensing. Furthermore, in vitro assays demonstrated effective inhibition of HCC cell proliferation and favorable regulation of oxidative stress biomarkers. These results suggest that 1-Fru-2-ATPMS@PFD holds great potential as a dual-functional material for targeted drug delivery and fluorescence-guided therapeutic monitoring in liver cancer treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信