{"title":"臭氧诱导的神经毒性:对神经退行性疾病的机制见解和意义。","authors":"Geir Bjørklund, Leonard Gurgas, Tony Hangan","doi":"10.2174/0109298673375058250624070823","DOIUrl":null,"url":null,"abstract":"<p><p>Ozone (O3), a reactive gas produced by sunlight-driven reactions involving nitrogen oxides and volatile organic compounds, presents serious risks to both respiratory and brain health. While its harmful effects on the lungs are well established, there is increasing evidence connecting ozone exposure to cognitive decline and neurodegenerative conditions like Alzheimer's and Parkinson's diseases. Ozone induces oxidative stress and systemic inflammation, and activates microglia, with the potential to reach the brain directly through the olfactory pathway. These mechanisms play a role in key neurodegenerative processes, such as the buildup of amyloid-beta, abnormal tau phosphorylation, and mitochondrial dysfunction. Drawing from findings in both animal and human studies, this review highlights the critical need to reduce ozone exposure to safeguard brain health and alleviate the growing impact of neurological disorders.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ozone-induced Neurotoxicity: Mechanistic Insights and Implications for Neurodegenerative Diseases.\",\"authors\":\"Geir Bjørklund, Leonard Gurgas, Tony Hangan\",\"doi\":\"10.2174/0109298673375058250624070823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ozone (O3), a reactive gas produced by sunlight-driven reactions involving nitrogen oxides and volatile organic compounds, presents serious risks to both respiratory and brain health. While its harmful effects on the lungs are well established, there is increasing evidence connecting ozone exposure to cognitive decline and neurodegenerative conditions like Alzheimer's and Parkinson's diseases. Ozone induces oxidative stress and systemic inflammation, and activates microglia, with the potential to reach the brain directly through the olfactory pathway. These mechanisms play a role in key neurodegenerative processes, such as the buildup of amyloid-beta, abnormal tau phosphorylation, and mitochondrial dysfunction. Drawing from findings in both animal and human studies, this review highlights the critical need to reduce ozone exposure to safeguard brain health and alleviate the growing impact of neurological disorders.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673375058250624070823\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673375058250624070823","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ozone-induced Neurotoxicity: Mechanistic Insights and Implications for Neurodegenerative Diseases.
Ozone (O3), a reactive gas produced by sunlight-driven reactions involving nitrogen oxides and volatile organic compounds, presents serious risks to both respiratory and brain health. While its harmful effects on the lungs are well established, there is increasing evidence connecting ozone exposure to cognitive decline and neurodegenerative conditions like Alzheimer's and Parkinson's diseases. Ozone induces oxidative stress and systemic inflammation, and activates microglia, with the potential to reach the brain directly through the olfactory pathway. These mechanisms play a role in key neurodegenerative processes, such as the buildup of amyloid-beta, abnormal tau phosphorylation, and mitochondrial dysfunction. Drawing from findings in both animal and human studies, this review highlights the critical need to reduce ozone exposure to safeguard brain health and alleviate the growing impact of neurological disorders.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.